



# GBGS SCHEME

17ME32

# Third Semester B.E. Degree Examination, June/July 2019 Material Scinece

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

| 1 | a. | Define Atomic Packing Factor and calculate Atomic Packing Factor for I  | FCC Crystal |
|---|----|-------------------------------------------------------------------------|-------------|
|   |    | Structure.                                                              | (08 Marks)  |
|   |    | State and explain Ficks first law of Diffusion.                         | (06 Marks)  |
|   | C. | Explain the different types of Point Imperfections, with neat sketches. | (06 Marks)  |

#### OF

| 2 | a. | Draw Stress - Strain diagram for mild steel and caste iron. Explain its b | behaviour under |
|---|----|---------------------------------------------------------------------------|-----------------|
|   |    | uniaxial Tension until fracture.                                          | (08 Marks)      |
|   |    | What is Fracture? How are they classified?                                | (04 Marks)      |
|   | c. | With a neat sketch, explain the different stages of creep deformation.    | (08 Marks)      |

## Module-2

|    | With a neat sketch, explain the construction of phase diagram. |   | (08 Marks) |
|----|----------------------------------------------------------------|---|------------|
|    | Explain Gibbs phase rule and Lever rule.                       |   | (06 Marks) |
| C. | With a neat sketch, explain different cast metal structures.   | 4 | (06 Marks) |

#### OR

4 a. Explain Homogeneous nucleation and discuss the significance of critical radius of nuclei.
(10 Marks)

b. Two metals A & B of melting points 900°C and 700°C respectively have unlimited mutual liquid solubilities. The solid solubility of B in A is 30% at eutectic temperature of 400°C, which reduces to 20% at 0°C. The solid solubility of A in B is 20% at eutectic temperature which reduces to 15% at 0°C. The eutectic composition is 70%B and 30% A. Draw the phase diagram. Calculate the solid and liquid phases of 40% B alloy at 500°C. (10 Marks)

### Module-3

5 a. Draw TTT diagram for eutectoid steel (0.83% C) and explain different micro structures.

(08 Marks)

|    | Sketch and explain Austempering and Martempering. | (08 Marks) |
|----|---------------------------------------------------|------------|
| C. | Sketch and explain Flame hardening.               | (04 Marks) |

# OR

| 6 | a. | Define and list the types of Heat Treatment processes. | (05 Marks) |
|---|----|--------------------------------------------------------|------------|
|   | b. | With a neat sketch, explain Joming End Queuch test.    | (08 Marks) |
|   | C. | Sketch and explain Nitriding process.                  | (07 Marks) |

#### Module-4

|    | Define Ceramics and briefly explain the types of ceramics.   | (08 Marks) |
|----|--------------------------------------------------------------|------------|
| b. | Explain Powder Metallurgy technique for Ceramic processing.  | (08 Marks) |
| C. | Differentiate between Thermoplastics and Thermoset plastics. | (04 Marks) |
|    | 1 60                                                         |            |

(08 Marks)

(04 Marks)

|    |    | OR                                                                             |               |
|----|----|--------------------------------------------------------------------------------|---------------|
| 8  | a. | Briefly explain the characteristics of plastics.                               | (05 Marks)    |
|    | b. | Define Smart Materials. Write a note on Piezoelectric materials.               | (05 Marks)    |
|    | C. | Write a note on Shape Memory alloys. List the Applications of Smart Materials. | (10 Marks)    |
|    |    |                                                                                |               |
|    |    | Module-5                                                                       |               |
| 9  | a. | Define Composites and classify them.                                           | (05 Marks)    |
|    | b. | Sketch and explain Filament winding process to produce composites.             | (08 Marks)    |
|    | c. | Write a note on Fibre reinforced plastic composites.                           | (07 Marks)    |
|    |    |                                                                                |               |
|    |    | OR                                                                             |               |
| 10 | a. | Derive an expression for Young's Modulus in a composite for longitudinal load  | ling of fibre |
|    |    | reinforced composite.                                                          | (08 Marks)    |
|    | b. | Calculate the volume ratio of Aluminum and Boron in Aluminum – Boron comp      | osite having  |

respectively 71 GPa, 440 GPa and 210 GPa.

c. State some Applications of composites.

Young's Modulus equal to Iron. The Young's Moduli of Aluminum, Boron and Iron are