

Seventh Semester B.E. Degree Examination, June/July 2019

Power Electronics

Max. Marks:100

Note: Answer any FIVE full questions, selecting at least TWO questions from each part.

PART - A

- 1 a. Explain five types of power electronic converter circuits briefly. Also indicate two applications of each type. (10 Marks)
 - b. Give symbol, and characteristic features of the following devices:
 - i) RCT

ANEAL Time: 3 hrs.

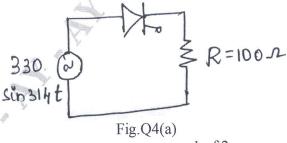
- ii) GTO
- iii) Triac
- iv) SCR
- v) IGBT

(10 Marks)

2 a. Give the comparison between BJT, MOSFET and IGBT.

(06 Marks)

- b. What is the necessity of base drive control in a power transistor? Explain antisaturation control. (08 Marks)
- c. For a transistor switch shown in Fig.Q2(c):
 - i) Calculate the forced beta, β_f of transistor.
 - ii) If the manufacturers specified β is in the range of 8 to 40, calculate the minimum overdrive factor (ODF)
 - iii) Obtain power loss P_T in the transistor.


$$V_{B} = 10V, R_{B} = 0.75\Omega$$

 $V_{BE(sat)} = 1.5V$
 $R_{C} = 11\Omega, V_{CC} = 200 V$
 $V_{CE(sat)} = 1V$

(06 Marks)

- 3 a. Draw the two transistor model of a thyristor and derive an expression for the anode current in terms of the common base current gain α_1 and α_2 of the transistors. (09 Marks)
 - b. What is the need for protection of thyristor? Explain how thyristors are protected against high $\frac{di}{dt}$. (06 Marks)
 - c. Explain different methods to turn on a thyristor.

(05 Marks)

4 a. What will be the average power in the load for the circuit shown in Fig.Q4(a), when $\alpha = \frac{\pi}{4}$. Assume SCR to be ideal. Supply voltage is 330 sin 314t. Also calculate the RMS power and the rectification efficient.

(06 Marks)

- b. With a neat circuit diagram and waveforms, explain the working of a single phase full controlled bridge converter feeding highly inductive load. Derive the expression for the average output voltage and rms output voltage.

 (10 Marks)
- c. Compare full controlled and semi-controlled rectifiers.

(04 Marks)

PART - B

- 5 a. With a neat circuit diagram and waveforms, explain complementary commutation. (10 Marks)
 - b. In the resonant pulse commutation circuit, the supply voltage is is $V_S = 200 \text{ V}$, load current $I_0 = 150 \text{ A}$, the commutation inductance $L = 4\mu\text{H}$ and commutation capacitance $C = 20 \text{ }\mu\text{F}$. Determine the peak resonant reversing current of thyristor T_3 and turn OFF time t_{OFF} for T_1 . Assume $V_O = V_S$.
- 6 a. With relevant circuit and waveform, explain the principle of single phase fullwave AC voltage controller with resistive load. Derive expression for RMS output voltage. (10 Marks)
 - b. A single phase FW ac voltage controller working on ON-OFF control has supply voltage of 230 V RMS, 50 Hz and load is 50 Ω. The controller is ON for 30 cycles and OFF for 40 cycles. Calculate:
 - i) ON or OFF time interval
 - ii) RMS output voltage
 - iii) Input power factor
 - iv) Average and RMS thyristor current (06 Marks) Compare ON-OFF controller and phase controller. (04 Marks)
- 7 a. Give the classification of choppers. Explain briefly each one of them.
 b. Explain the working of boost regulator with waveforms.
 (10 Marks)
 - c. Explain the working of boost regulator with waveforms. (06 Marks)

 Explain the principle of operation of step up chopper. (04 Marks)
- 8 a. Explain the performance parameters of inverters. (06 Marks)
 - b. Explain the operations of single phase half bridge inverter.
 c. Explain the working of variable DC link inverter.
 (08 Marks)
 (06 Marks)

* * * * *