



## Seventh Semester B.E. Degree Examination, June/July 2019 Image Processing

Time: 3 hrs.

Max. Marks:100

Note: Answer any FIVE full questions, selecting atleast TWO questions from each part.

## PART - A

- 1 a. With a neat block diagram, explain the components of a general purpose image processing system. (10 Marks)
  - b. Explain the following terms as applicable to image processing with necessary graphs.
  - c. i) Brightness adaptation
    - ii) Weber ratio
    - iii) Mach bands.

(10 Marks)

- 2 a. Explain the concept of image sampling and quantization in image processing with an example. (08 Marks)
  - b. Consider the image segment given in Fig.Q2(b). Let  $v = \{2, 3, 4\}$ , compute the lengths of the shortest 4, 8 and m path between 'p' and 'q'. If path does not exists explain why?

(06 Marks)

| <b>V</b> , | 3 | 4 | 1 | 2 | 0 | <b>*</b> |
|------------|---|---|---|---|---|----------|
|            | 0 | 1 | 0 | 4 | 2 | (q)      |
|            | 2 | 2 | 3 | 1 | 4 |          |
| (p)        | 3 | 0 | 4 | 2 | 1 |          |
|            | 1 | 2 | 0 | 3 | 4 |          |

Fig.Q2(b)

- c. Let p and q are the two pixels at co-ordinates (100, 200) and (150, 190) respectively. Compute:
  - i) Euclidean distance ii) city block distance iii) chessboard distance.

(06 Marks)

3 a. For the  $2 \times 2$  transform A and the image U,

$$A = \frac{1}{2} \begin{bmatrix} \sqrt{3} & 1 \\ -1 & \sqrt{3} \end{bmatrix} \quad U = \begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix}$$

Calculate the transformed image V and the basis image. Also reconstruct the original image.

(10 Marks)

- b. Explain any three properties of two dimensional Discrete Fourier transform.
- (06 Marks)

c. Write a note on separable unitary transforms.

- (04 Marks)
- 4 a. Give an expression for 2D discrete sine transform and discuss its properties. (10 Marks)
  - b. Generate Hadamard transform matrix  $H_n$  for n = 2, 3 for the given core matrix :

$$H_1 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}.$$
 (08 Marks)

c. State any two properties of SLANT transform.

(02 Marks)

## PART - B

- 5 a. Explain the following with applications:
  - i) Contrast stretching
  - ii) Bit plane slicing
  - iii) Grey level slicing

iv) AND operation. (10 Marks)

b. For the image shown in Fig. Q5(b), plot the histograms before and after the histogram equalization. (10 Marks)

$$\begin{bmatrix} 2 & 3 & 3 & 2 \\ 4 & 2 & 4 & 3 \\ 3 & 2 & 3 & 5 \\ 2 & 4 & 2 & 4 \end{bmatrix}$$

Fig. Q5(b)

- 6 a. Explain the following smoothing frequency domain filters and compair.
  - i) Ideal lowpass filter
  - ii) Gaussian pass filter. (10 Marks)
  - b. Illustrate homomorphism filtering process in image enhancement and derive the suitable result.

    (10 Marks)
- 7 a. Write a note on the following noise probability density functions:
  - i) Gaussian noise
  - ii) Rayleigh noise
  - iii) Erlang noise
  - iv) Exponential noise. (12 Marks)
  - b. Derive an expression of the linear degradation model in presence of additive noise.

(08 Marks)

a. Explain the procedure for converting colors form (RGB) to HSI and vice-versa. (10 Marks)

b. What is pseudo color image processing? Explain gray level to color transformations.

(10 Marks)