

15EC663

Sixth Semester B.E. Degree Examination, June/July 2019 Digital System Design using Virology

Time: 3 hrs.

Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- a. Define the terms setup time, hold time and clock to output time of a flip-flop and what are the constraints imposed by these parameter on the circuit operations. (05 Marks)
 - b. Develop veriology module for 7 segment decoder. Include an additional input 'blank' that overrides the BCD input and causes all segments not to be lit. (06 Marks)
 - c. Explain functional verification and formal verification for a verilog module

OR

- 2 a. What are the effects of capacitive loading and propagation delay on signal transitions between logic levels? (08 Marks)
 - b. Develop verilog module for 4:1 MUX.

(04 Marks)

c. Explain general view of digital system with data path control section.

(04 Marks)

(05 Marks)

Module-2

- a. Design a 64k ×8 bit composite memory using four 16k × 8 bit components and also explain how memory components with tristate data outputs simplify the construction of larger memories.
 - b. Explain asynchronous static RAM with timing diagrams.

(08 Marks)

OR

4 a. Write a note on multiport memories.

(08 Marks)

b. Explain error detection and correction with one example.

(08 Marks)

Module-3

5 a. Explain different types of PCB design.

(05 Marks)

b. Explain implementation fabrics for digital system based on integrated circuit.

(07 Marks)

c. What are EMI and cross talk?

(04 Marks)

OR

6 a. Briefly explain programmable array logic.

(08 Marks)

b. Explain signal integrity issue in PCB design and also explain measures to reduce these issues.

(08 Marks)

Module-4

7 a. Explain the serial transmission of 64 bit data within clock domain with timing diagram.

(08 Marks)

b. Explain the following serial interface standards for connecting I/O devices.i) RS232 ii) Fire wire.

(08 Marks)

OR

8 a. Explain any 4 analog sensors.

(08 Marks)

b. Explain the concept of multiplexed buses

(08 Marks)

Module-5

9 a. Explain logical partitioning and physical partitioning of a transport monitoring system.

(08 Marks)

b. Explain fault model and fault simulation.

(08 Marks)

OR

10 a. Explain 4 bit LFSR and CFSR for generating pseudorandom test vectors. (08

(08 Marks)

b. Explain briefly area, power and timing optimization in digital circuits.

(08 Marks)

* * * * *