15EC52

Fifth Semester B.E. Degree Examination, June/July 2019 Digital Signal Processing

Time: 3 hrs.

Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- a. Describe the process of frequency domain sampling and reconstruction of discrete time signals. (10 Marks)
 - b. Using linearity property find the DFT of the sequence $x(n) = \cos\left(\frac{\pi n}{4}\right) + \sin\left(\frac{\pi}{2}n\right)$ consider N = 4.

OR

- 2 a. State and prove the i) circular time shift ii) circular time reversal properties of DFT. (08 Marks)
 - b. Solve by concentric circle or graphical method to find circular convolution $x(n) = \{1, 3, 5, 3\}$ and $h(n) = \{2, 3, 1, 1\}$.
 - c. Derive the expression for the relationship of DFT with Z transforms.

(04 Marks)

Module-2

- 3 a. State and prove the following properties:
 - i) Circular correlation
 - ii) Parseval's theorem.

(06 marks)

b. Consider a FIR filter with impulse response $h(n) = \{3, 2, 1, 1\}$. If the input is $x(n) = \{1, 2, 3, 3, 2, 1, -1, -2, -3, 5, 6, -1, 2, 0, 2, 1\}$. Find the output use overlap – same method. Assuming the length of block is 9.

OR

- 4 a. Explain the linear filtering of long data sequences using overlap-add method. (08 marks)
 - b. An FIR filter has the impulse response of $h(n) = \{1, 2, 3\}$. Determine the response of the filter to the input sequence $x(n) = \{1, 2\}$ use DFT and IDFT and verify the result using direct computation of linear convolution. (08 Marks)

Module-3

- 5 a. Develop DIT-FFT algorithm and obtain the signal flow diagram for N = 8. (08 Marks)
 - b. Determine the IDFT of $X(K) = \{4, 1 j2.414, 0, 1 j0.414, 0, 1 + j0.414, 0, 1 + j2.414\}$ using inverse radix 2 DIT FFT algorithm. (08 Marks)

OR

- 6 a. Define chirp Z-transform. What are the applications of chirp-Z transform. (04 Marks)
 - b. The DFT of the following sequence using DIF FFT algorithm $x_1(n) = \{1, 1, 1, 0, 0, 1, 1, 1\}$ (ii) using the results in (i) Find DFT of signal $x_2(n) = \{1, 1, 1, 1, 0, 0, 1\}$ consider N = 8. (12 Marks)

Module-4

a. Obtain the direct form I, direct form II, cascade and parallel form realization for the following system. y(n) = 0.75y(n-1) - 0.125y(n-2) + 6x(n) + 7x(n-1) + x(n-2).

(08 Marks)

b. Realize the system given by the difference equation:

y(n) = -0.1y(n-1) + 0.72y(n-2) + 0.7x(n) - 0.252 x(n-2)

Use parallel form. Is this system stable? Determine its impulse response.

(08 Marks)

Design an IIR digital filter that when used in the prefilter A/D - H(z) - D/A structure will 8 SATISFY the following equivalent along specifications.

i) LPF with -1dB cutoff at 100π rad/sec

ii) stopband attenuation of 35dB or greater at 1000π rad/sec.

iii) monotonic stop band and pass band

iv) sampling rate of 2000 samples/sec.

b. Obtain H(z) using impulse invariance method for the following analog filter 5Hz sampling

frequency $H_a(S) = \frac{2}{(S+1)(s+2)}$.

(06 Marks)

Module-5
Realize a linear phase FIR filter with the following impulse response.

 $h(n) = \sigma(n) + \frac{1}{4}\sigma(n-1) - \frac{1}{8}\sigma(n-2) + \frac{1}{4}\sigma(n-3) + \sigma(n-4).$

(06 Marks)

b. Consider a 3-stage FIR lattice structure having the coefficients $K_1 = 0.65$, $K_2 = -0.34$, $K_3 = 0.8$. Evaluate its impulse response by tracing a unit impulse $\sigma(n)$ at its input through the Lattice structure. Also, draw its direct form-1 structure.

the desired frequency response of a LPF $H_d(w) = \begin{cases} e^{-j3w} & |w| < 3\frac{\pi}{4} \\ 0 & 3\frac{\pi}{4} < |w| < \pi \end{cases}.$

Find the impulse response h(n) using Hamming window. Determine the frequency response of FIR filter. Consider N = 7. (10 Marks)

- b. Explain the following terms:
 - i) Hamming window
 - ii) Hanning window
 - iii) Bartlet window.

(06 Marks)