CBCS SCHEME

USN												17EC34
-----	--	--	--	--	--	--	--	--	--	--	--	--------

Third Semester B.E. Degree Examination, June/July 2019 Digital Electronics

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- a. Construct a truth table and write a Boolean expression for the problem statement. An output variable Y is to be true when the value of inputs exceeds 4. The weights for each input variable is a = 4, b = 3, c = -1, and d = 1. Design the logic circuit for the obtained expression.

 (10 Marks)
 - b. Place the equation P = f(a, b, c) = ab + ac + bc into proper canonical form and write the minterms. (05 Marks)
 - c. What do you mean by canonical SOP and canonical POS? Explain with example? (05 Marks)

OR

- 2 a. Simplify $K = f(w, x, y, z) = \sum m(0, 1, 5, 13, 15) + \sum d(2, 7, 10, 14)$ using K-map method. Draw the logic diagram for obtained expression. (10 Marks)
 - b. Simplify $D = f(a, b, c, d) = \sum m(0, 1, 2, 3, 6, 7, 8, 9, 12, 15)$ using QM method, verify the same using K-map. Draw the logic diagram for simplified expression. (10 Marks)

Module-2

- 3 a. What is an encoder? Design 4 to 2 priority encoder? (08 Marks)
 - b. Realize the function $X = f(a, b, c, d) = \sum m(0, 3, 7, 10, 13)$ using 74LS138 ICs. (08 Marks)
 - c. Design 4: 1 Mux and draw the logic diagram using basic gates. (04 Marks)

OR

- 4 a. Implement $f(a, b, c, d) = \sum m(0, 1, 5, 6, 7, 10, 15)$ using 8:1 Mux with a, b, c as select lines.
 - b. Design a binary full subtractor using NAND gates only. (08 Marks)
 (06 Marks)
 - c. Explain about carry look ahead adder.

(06 Marks)

Module-3

- 5 a. Obtain the characteristic equations for D and T flip-flops. (08 Marks)
 - b. Explain the operation of SR-Flip-Flop with the help of logic diagram. Draw functional table. (08 Marks)
 - c. What is race around condition? Explain with diagram.

(04 Marks)

- a. Explain the working of master slave J-K flip flop with the help of logic diagram. Draw the timing diagrams of the same. (10 Marks)

OR

b. Explain D-flip-flop operation using positive edge triggered clock.

(06 Marks)

- c. Write two-two difference between:
 - i) Combinational and sequential logic
 - ii) Latch and flip-flop.

(04 Marks)

Module-4

- What is register? Explain with diagram of 4-bit serial-in parallel-out shift register. (10 Marks) 7 Explain 3-bit asynchronous up and down binary counters.
 - (10 Marks)

OR

- Design mod-5 ripple counter using T-flip-flops. (08 Marks) b. Design 3-bit synchronous up counter. (08 Marks)
 - Compare asynchronous and synchronous counters. (04 Marks)

Module-5

Design a Mealy type sequence detector to detect a serial input sequence of 101. 9 (10 Marks) Design 2-bit synchronous up counter. (10 Marks)

OR

Analyze the following sequential circuit, by writing input and output equations, state table 10 and state diagram. (12 Marks)

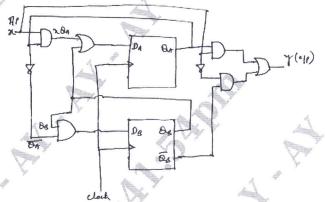


Fig.Q10(a)

- What are Mealy and Moore models? Explain briefly with diagram. (04 Marks) Draw a sate table and state diagram with an example.
 - (04 Marks)