Fighth Samester R.F. De

Eighth Semester B.E. Degree Examination, June/July 2019 Power System Operation and Control

Time: 3 hrs.

LibrUSN

PANGAL

Max. Marks: 100

Note: Answer any FIVE full questions, selecting at least TWO questions from each part.

PART - A

- 1 a. Derive expression for frequency deviation and change in tie-line power flow in a two area inter connected power system. (08 Marks)
 - b. Explain the objectives and function of AGC in a power system. (05 Marks)
 - C. Two synchronous generators are initially supplying a common load at 1PU frequency (50 Hz). The rating of unit 1 is 337 MW and has 0.03 P.U droop built into its governor. Unit 2 is rated at 420 MW and has 0.05PU droop. Find each unit share of a 0.1 PU increase in the total demand. Also find the new line frequency. (07 Marks)
- 2 a. Describe the function of AVR with a neat block diagram. (06 Marks)
 - b. Write notes on basic generator control loops and cross coupling between control loops.
 - c. Determine the primary ALFC loop parameters for control area having the following data: Total rates area capacity, $P_r = 2000 \text{ MW}$ Inertia constant 5.05, Frequency $f_0 = 60 \text{ Hz}$ Normal operating load $P_D = 1000 \text{ MW}$. (06 Marks)
- 3 a. Obtain the complete block diagram representation of Load Frequency Control (LFC) of an isolated power system, with necessary equations (transfer functions). (10 Marks)
 - b. Obtain an expression for steady state change in system frequency Δf_{ss} for step change in the load demand, assume free governor operations. (10 Marks)
- 4 a. Define: i) Voltage stability ii) Voltage collapse iii) Sub synchronous resonance (06 Marks)
 - b. Explain briefly the components/equipments of power system that can generate and/or absorb reactive power. (08 Marks)
 - c. Derive the equations to get the relation between voltage, power and reactive power at a node. (06 Marks)

PART - B

- 5 a. With the help of a flow chart, explain the dynamic programming method in unit commitment solution. (10 Marks)
 - b. Explain priority list method for unit commitment problem with an example. (10 Marks)
- 6 a. Explain the factors affecting power system security. (08 Marks)
 - b. With the block diagram, explain AC power flow security analysis. (06 Marks)
 - c. With the help of flow chart, explain the contingency selection procedure. (06 Marks)
- 7 a. Explain Energy Management System. (08 Marks)
 - b. Explain the least square estimation method used in power system state estimation. (12 Marks)
- 8 a. With the help of flow chart, explain loss and load probability for planning of generating capacity. (10 Marks)
 - b. Obtain the expression for steady-state reliability and general reliability function. (10 Marks)

* * * * *