

GBCS SCHEME

15EE63

Sixth Semester B.E. Degree Examination, June/July 2019 Digital Signal Processing

Time: 3 hrs.

Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- a. Determine DFT of sequence $x(n) = \frac{1}{3}$ for $0 \le n \le 2$ for N = 4. Plot magnitude and phase spectrum.
 - b. Two length 4 sequence are defined below:

$$x(n) = \cos\left(\frac{\pi n}{2}\right)$$
 $n = 0, 1, 2, 3$

$$h(n) = 2^n$$
 $n = 0, 1, 2, 3$

- i) Calculate $x(n) \otimes_4 h(n)$ using circular convolution directly.
- ii) Calculate x(n) ⊛4 h(n) using Linear convolution.

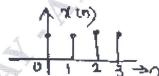
(08 Marks)

OR

2 a. Compute circular convolution using DFT + IDFT for following sequence:

$$x_1(n) = \left\{ \frac{2}{1}, 3, 1, 1 \right\}, \quad x_2(n) = \left\{ \frac{1}{1}, 3, 5, 3 \right\}.$$

(08 Marks)


b. Find the output of the LTI system whose impulse $h(n) = \{1, 1, 1\}$ and the input signal is $x(n) = \{3, -1, 0, 1, 3, 2, 0, 1, 2, 1\}$. Using the overlap save method. Use 6-pt circular convolution.

Module-2

- 3 a. What are FFT algorithms? Explain the advantages of FFT algorithms over the direct computations of DFT for a sequence x(n). (04 Marks)
 - b. What are the differences and similarities between DIT and DIF -FFT algorithms? (04 Marks)
 - c. Find the 8-pt DFT of the sequence $x(n) = \{1, 2, 3, 4, 4, 3, 2, 1\}$. Using DIT FFT radix 2 algorithm. (08 Marks)

OR

4 a. Find the 4-pt circular convolution of x(n) and h(n) given. Using radix-2 DIF – FFT algorithm. (08 Marks)

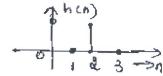


Fig.Q4(a)

b. Given x(n) = (n + 1) and N = 8. Determine X(K). Using DIF – FFT algorithm. (08 Marks) 1 of 3

Module-3

5 a. Convert the analog filter with system transfer function:

$$H(s) = \frac{(s+0.1)}{(s+0.1)^2 + 3^2}$$

into a digital IIR filter by mean of the impulse invariant method.

(06 Marks)

b. Design a butter worth digital IIR lowpass filter using bilinear transformation by taking T = 0.1sec, to satisfy the following specification:

OR

6 a. Compare analog and digital filters.

(04 marks)

- b. Determine the poles of lowpass Butterworth filter for N = 2. Sketch the location of poles on s-plane and hence determine the normalized transfer function of lowpass filter. (08 Marks)
- c. Write difference between IIR and FIR filter.

(04 Marks)

Module-4

7 a. Design a Chebyshev digital IIR lowpass filter using impulse invariant transformation by taking T = 1 sec to satisfy the following specifications;

$$\begin{array}{c|c} 0.9 \leq & H(e^{j\omega}) \leq 1.0; & \text{for } 0 \leq \omega \leq 0.25\pi \\ & H(e^{j\omega}) \leq 0.24; & \text{for } 0.5\pi \leq \omega \leq \pi \end{array}$$

Draw direct form – I and II structure of the filter.

(12 Marks)

b. Write the relation between analog and digital frequency in Billnear transformation.

(04 Marks)

OR

8 a. Obtain the direct form – I, direct form II realization of the LTI system governed by the relation.

$$y(n) = -\frac{3}{8}y(n-1) + \frac{3}{32}y(n-2) + \frac{1}{64y}y(n-3) + x(n) + 3x(n-1) + 2x(n-2).$$
 (08 Marks)

b. Realize the given system in cascade and parallel form:

$$H(z) = \frac{1 + 0.25z^{-1}}{(1 - 2z^{-1} + 0.25z^{-2})(1 - 3z^{-1} + 0.25z^{-2})}.$$
 (08 Marks)

Module-5

- The frequency response of a filter is described by : $H(\omega) = j\omega$, $-\pi \le \omega \le \pi$. Design the filter using a rectangular window. Take N = 7.
- b. Design a lowpass digital filter to be used in A/D H(z) D/A structure that will have 3dB cutoff at 30π rad/sec and attenuation factor of 5dB at 45π rad/sec. The filter is required to have a linear phase and the system will use sampling frequency of 100 samples/sec. (08 Marks)

OR

10 a. Deduce the equation for the following frequency spectrum for rectangular window sequence defined by:

$$w_f(n) = \begin{cases} 1, & \frac{-(N-1)}{2} \le n \le \frac{N-1}{2} \\ 0, & \text{otherwise} \end{cases}$$
 (06 Marks)

b. A lowpass filter has the desired frequency response:

$$H_{d}(\omega) = \begin{cases} e^{-j\omega 3}, & 0 < \omega < \frac{\pi}{2} \\ 0, & \text{otherwise} \end{cases}.$$

Determine h(n) based on frequency sampling method. Take K = 7. (06 Marks)

c. Realize the linear phase FIR filter having the following impulse response:

$$h(n) = \delta(n) + \frac{1}{4}\delta(n-1) - \frac{1}{8}\delta(n-2) + \frac{1}{4}\delta(n-3) + \delta(n-4). \tag{04 Marks}$$
