

GBCS SCHEME

15EE54

Fifth Semester B.E. Degree Examination, June/July 2019 Signals and Systems

Time: 3 hrs.

Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

a. Explain the classification of signals.

(05 Marks)

b. For the continuous-time signal x(t) shown in Fig.Q1(a) obtain y(t) = x(3t) + x(3t+2). (05 Marks)

Fig.Q1(a)

c. Find odd and even components for the signals given:

i)
$$x(t) = (1+t^3)\cos^{10}(t)$$
 ii) $x(t) = 1+t+3t^2+5t^3+9t^4$.

(06 Marks)

OF

2 a. Explain the properties of systems.

(05 Marks)

- b. Determine whether the continuous-time signal, $y(t) = y_1(t) + y_2(t) + y_3(t)$ is periodic; where $y_1(t)$, $y_2(t)$ and $y_3(t)$ have periods of 1.08, 3.6 and 2.025 seconds respectively. (05 Marks)
- c. For the following continuous-time systems, determine whether the system is i) linear ii) time invariant iii) memoryless.

 $1) y(t) = x(\sin t)$

2) y(t) = (t + 10) x(t)

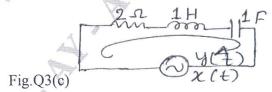
(06 Marks)

Module-2

3 a. Derive the equation for convolution sum.

(06 Marks)

b. The impulse response of an LTI system is given by


$$h(n) = 1$$
; $n = \pm 1$
= 2; $n = 0$
= 0; otherwise

Determine the output for an input sequence x(n) = [2, 3, -2].

(05 Marks)

c. Find the forced response for the system given in Fig.Q3(c). With input $x(t) = 2e^{-t} u(t)$.

(05 Marks)

OR

4 a. Prove the commutative property for convolution sum. (06 Marks)

b. Find the response of the system described by the difference equation $y(n) - \frac{1}{9}y(n-2) = x(n-1)$ with y(-1) = 1, y(-2) = 0, and x(n) = u(n). (05 Marks)

c. Draw the block diagram corresponding to the LTI system described by the difference equation given by $y[n] + \frac{1}{2}y[n-1] - \frac{1}{3}y[n-3] = x[n] + 2x[n-2]$. (05 Marks)

Module-3

- State any six properties of the continuous time Fourier transform. 5 (06 Marks)
 - Find the frequency response of a continuous time LTI system represented by the impulse response $h(t) = e^{-|t|}$. (05 Marks)
 - Find the frequency response and the impulse response of the system described the Find the requere, $\frac{dy(t)}{dt} + 8y(t) = x(t)$. (05 Marks)

- a. If $x(t) \leftarrow FT \rightarrow x(j\omega)$ then prove that $y(t) = e^{j\beta t}x(t) \leftarrow FT \rightarrow y(j\omega) = x(j\omega \beta)$.
 - b. Evaluate the Fourier transform for the signal, $x(t) = e^{-3t}u(t-1)$. Find the expression for magnitude and phase spectra. (05 Marks)
 - Find the frequency response and the impulse response of the system described by the differential equation : $\frac{d^2y(t)}{dt^2} + 5\frac{dy(t)}{dt} + 6y(t) = \frac{-dx(t)}{dt}.$ (05 Marks)

- Module-4
 State and prove time-shift property fo the discrete-time Fourier transform (DTFT). (06 Marks)
 - Find the DTFT of the signal $x(n) = \alpha^n u(n)$; $|\alpha| < 1$. Draw the magnitude spectrum.

(05 Marks)

Obtain the frequency response and the impulse response of the system described by the difference equation given by $y(n) + \frac{1}{2}y(n-1) = x(n) - 2x(n-1)$. (05 Marks)

State and prove Parseval's theorem.

(06 Marks)

Find the DTFT of $\delta(n)$ and draw the spectrum.

(05 Marks)

Obtain the difference equation for the system having impulse response.

$$h(n) = \delta(n) + 2\left(\frac{1}{2}\right)^n u(n) + \left(-\frac{1}{2}\right)^n u(n). \tag{05 Marks}$$

a. Define RoC and explain its properties.

(06 Marks)

b. Find the z-transform of $x(n) = \alpha^n u(n)$ and draw its RoC.

(05 Marks)

c. Find the discrete –time sequence x(n) which has z-transform, $x(z) = \frac{-1 + 5z^{-1}}{\left(1 - \frac{3}{2}z^{-1} + \frac{1}{2}z^{-2}\right)}$ with

RoC; |z| > 1.

(05 Marks)

OR

State and explain final value theorem.

(06 Marks)

b. Find x(z) if $x(n) = -\alpha^n u(-n-1)$ and find the RoC.

(05 Marks)

Obtain the time domain single corresponding to the z -transform given below:

$$x(z) = \frac{\frac{1}{4}z^{-1}}{\left(1 - \frac{3}{4}z^{-1} + \frac{1}{8}z^{-2}\right)}; |z| > \frac{1}{2}.$$
 (05 Marks)