

Fourth Semester B.E. Degree Examination, June/July 2019

Field Theory

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, selecting at least TWO questions from each part.

PART - A

- 1 a. State and explain Coulamb's law. (06 Marks)
 - State Gauss' law. Obtain an expression for electric field intensity 'E' due an infinite sheet of charge using Gauss' law. (08 Marks)
 - Given that $\vec{D} = 2xya\hat{x} + x^2a\hat{y}$ c/m². Evaluate both sides of divergence theorem for the surface defined by $0 \le x \le 1$; $0 \le y \le 2$; $0 \le z \le 3$. (06 Marks)
- 2 a. Show that electric field intensity 'E' as the negative gradient of potential (V). (06 Marks)
 - b. Obtain continuity equation, derive its point form. (06 Marks)
 - c. A point charge of 1.6 nc is located at the origin in free space. Find the potential at r = 0.7 m if (i) the zero reference is at infinity (ii) the zero reference is at r = 0.5 m. (08 Marks)
- 3 a. Derive Laplace and Poisson's equations and write down the equations in all coordinate systems. (06 Marks)
 - b. Using Laplace equation, determine the distribution of potential and electric field intensity between two spherical conductors separated by a dielectric. The inner conductor is having a potential of V_0 while the outer conductor is grounded. (07 Marks)
 - c. Let $V = \frac{\cos 2\phi}{\rho}$ in free space, find the volume charge density at point A($\rho = 0.5$, $\phi = 60^{\circ}$, z = 1). (07 Marks)
- 4 a. State and prove Stoke's theorem. (06 Marks)
 - b. Given that $B = 2.5 \sin \left[\frac{\pi x}{z} \right]^{e^{-2y}}$ a 2 + 2 = 0, $y \ge 0$, $0 \le x \le 2m$. (07 Marks)
 - c. Write a note on scalar and vector magnetic potentials. (07 Marks)

PART - B

- 5 a. Derive an expression for the force on a differential current element placed in a magnetic field. (06 Marks)
 - b. State and prove the boundary conditions at the interface between two magnetic media of different permeabilities placed in a magnetic field. (07 Marks)
 - c. Find the magnetic field intensity at point P for the given piece of conductor. [Refer Fig.Q5(c)]

Fig.Q5(c)

(07 Marks)

6 a. Differentiate between motional emf and transformer induced emf.

(06 Marks)

b. Write a note on retarded potential.

(06 Marks)

c. Determine the value of K such that the followings pairs of fields satisfy Maxwell's equation where $\sigma = 0$, $\rho_v = 0$.

 $\vec{E} = (Kx - 100t)a\hat{y} V/m$

 $\vec{H} = (x + 20t)a\hat{z} A/m$

 $\mu = 0.25 \text{ H/m}$

 $\epsilon = 0.01 \text{ F/m}$

(08 Marks)

- 7 a. State and explain Poynting's theorem. Explain each term in Poynting equation. (08 Marks)
 - b. Explain propagation of wave in good dielectric medium.

(07 Marks)

- c. A 400 MHz uniform plane wave travelling in water for which σ = 0; μ_r = 1 and ϵ_r = 80. Calculate:
 - i) Attenuation constant
 - ii) Phase constant
 - iii) Wave length
 - iv) Intrinsic impedance

(05 Marks)

8 a. What is standing wave? Define SWR. What is its relation with reflection coefficient?

(06 Marks)

- b. Find the value of standing wave ratio when reflection coefficient is $\pm 1/2$. (06 Marks)
- c. A 1 MHz uniform plane wave with a power density of 1.28 MW/m² is normally incident on to fresh water lake having $\epsilon_r = 78$, $\mu_r = 1$. Determine the fraction of the incident power that is: (i) Reflected (ii) Transmitted (08 Marks)

* * * * *