## Third Semester B.E. Degree Examination, June/July 2019 **Logic Design**

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, selecting atleast TWO questions from each part.

## PART - A

- a. With a neat diagram, explain the working of TTL NAND gate. (06 Marks)
  - b. What are the advantages of HDL? Explain the types of models in HDL with an example of each. (08 Marks)
  - c. Consider the following logic circuit of Fig.Q1(c). Write the verilog structural code for the same. (06 Marks)



2 a. Using K-map, simplify the Boolean expression

 $F(A, B, C, D) = \sum m(0, 3, 4, 5, 6, 7, 11, 15) + dc(2, 8, 9, 10, 12, 13)$ 

Implement the simplified equation using NAND gates.

(06 Marks)

b. For the following K-map of Fig.Q2(b) give SOP and POS form that do not show static 0 or static 1 hazard. (06 Marks)

|                             | $\overline{C}$ | C |
|-----------------------------|----------------|---|
| $\overline{A} \overline{B}$ | 1              | 1 |
| ĀB                          | 0              | 0 |
| AB                          | 1,             | 0 |
| $\overline{AB}$             | 1              | 0 |

Fig.Q2(b)

Reduce the following function using Quine McClusky method.  $F(A, B, C, D) = \sum m(1, 4, 6, 8, 9, 10, 11, 12, 13) + dc(3, 15)$  Implement the simplified equation using NOR Gates.

(08 Marks)

- 3 a. Define multiplexer and draw the logic diagram of 4:1 MUX. Implement the Boolean function  $F(A, B, C, D) = \sum m(1, 7, 9, 10, 12, 13, 14, 15)$  using 8 to 1 MUX. (06 Marks)
  - b. Draw a ROM circuit that realize the Boolean functions.

 $Y_0 = \overline{A} B \overline{C} + \overline{A} B C + A B \overline{C} + ABC$ 

$$Y_3 = \overline{A} \overline{B} \overline{C}$$
  
 $Y_2 = A \overline{B} C + ABC$   
 $Y_1 = A \overline{B} C + \overline{A} BC + ABC$ 

(07 Marks)

(05 Marks)

c. Define an encoder. Design a priority encoder the truth table of which is shown in Fig.Q3(c) (07 Marks)

|   | Input |       |       | Output |     |
|---|-------|-------|-------|--------|-----|
| S | $X_1$ | $X_2$ | $X_3$ | A      | В   |
| 0 | X     | X     | X     | 0      | 0   |
| 1 | 1     | X     | X     | 0      | 1   |
| 1 | 0     | 1     | X     | 1      | 0   |
| 1 | 0     | 0     | 1     | 1      | 1   |
| 1 | 0     | 0     | 0     | 0      | 0 😽 |

Fig.Q3(c)

- 4 a. What is meant by edge triggered flip flop and explain the terms propagation delay, setup time and hold time of a flip flop. (04 Marks)
  - b. What is excitation table? Write the characteristics equation, state transition diagram and flip-flop excitation table for JK flip-flop. Also write the verilog code for SR latch. (07 Marks)
  - c. Convert D flip-flop to SR flip flop and draw the logic diagram. (04 Marks)
  - d. Analyse the following circuit of Fig.Q4(d) and indicate what it does.



## PART - B

- 5 a. With a neat diagram, explain 4 bit parallel in serial out shift register using D flip flop.
  (08 Marks)
  - b. What is the difference between serial in serial out and parallel in parallel out shift register?
    (02 Marks)
  - c. Explain with neat diagram and waveform 4 bit shift register can be used as ring counter and Johnson's counter. (08 Marks)
  - d. How long will it take to shift an 8 bit number into a 54164 shift register if the clock is set at 10 MHz. (02 Marks)
- 6 a. What is modulus of a counter? Design synchronous decade counter using JK flip-flop.

b. What are decoding gates? What is the primary cause of glitches that occur at the output of a

- decoding gate used with a ripple counter? What is one method to eliminate these glitches?

  (03 Marks)
- c. Define duty cycle. What is the value of duty cycle for an asymmetrical signal if the waveform is high for 2 ms and low for 5 ms? (03 Marks)
- d. With a neat diagram and waveform, explain 3 bit asynchronous updown counter. (06 Marks)

- 7 a. Design a sequence detector using Mealy model that detects three consecutive zero's from an input data stream, x and signals detection by making output, y = 1. (06 Marks)
  - b. Differentiate between Mealy machine and Moore machine.

(02 Marks)

c. Reduce state transition diagram of Fig.Q7(c) by (i) Row elimination method and (ii) Implication table method. (12 Marks)



Fig.Q7(c)

- 8 a. Draw a 4 bit D/A converter using R/2R resistors and explain the working. (06 Marks)
  - b. What is accuracy and resolution of D/A converter? What is the resolution of a 12 bit D/A converter which uses a binary ladder? If the full scale output is +10V, what is the resolution in volts.

    (04 Marks)
  - c. Explain Dual slope A/D conversion.

(10 Marks)

\* \* \* \* \*