

Sixth Semester B.E. Degree Examination, June/July 2019

Design and Drawing of RC Structures

Time: 4 hrs.

Max. Marks:100

Note: 1. Answer any TWO full questions from PART-A and ONE question from PART-B.

2. Use of IS-456-2000 is permitted.

3. Missing data may be assumed.

PART - A

A two way slab for a hall of inner dimension $3m \times 5m$ has following details:

Slab is discontinuous on all four edges

Thickness of slab = 150 mm, thickness of wall = 230 mm

Steel in short span = 10 mm dia @ 150 mm c/c

Steel in longer span = 10 mm dia @ 175 mm c/c

Torsional steel = 10 mm dia @ 160 mm c/c

Grade of concrete = M20

Grade of steel = Fe 415.

Draw to a suitable scale the following:

a. Plan showing the details of reinforcement

b. C/S of slab at mid span along shorter span and longer span

(20 Marks)

2 A rectangular RCC column and footing has the following details:

Dimensions of column = $230 \times 450 \text{ mm}$

Size of footing = $2400 \times 1800 \text{ mm}$

Depth of footing at the junction = 500 mm

Depth of footing edge = 300 mm

Depth of foundation below ground level = 1500 mm

Reinforcement details:

Column: Longitudinal reinforcement = 8 # 16 mm o

Lateral ties = 8 mm dia @ 180 mm c/c

Footing: Shorter span = $12 \text{ mm } \phi @ 100 \text{ mm c/c}$

Longer span = $12 \text{ mm } \phi @ 125 \text{ mm c/c}$

Use M20 concrete and Fe415 steel.

Draw the suitable scale, the following:

- a. Sectional plan of column and footing
- b. Sectional elevation of column and footing
- c. Prepare the bar bending schedule.

(20 Marks)

- 3 A Dog legged staircase has following data:
 - i) Hall dimensions = 5.5×2.6 m
 - ii) Vertical distance between the floor = 3.3 m
 - iii) Thickness of waist slab = 180 mm
 - iv) Width of stair = 1.25 m
 - v) Step dimension Tread = 300 mm, Rise = 150 mm

- vi) Wall thickness = 0.23 m
- vii) Reinforcement details

Main bars = $12 \text{ mm } \phi @ 150 \text{ mm c/c}$

Distribution bars = $8 \text{ mm } \phi @ 170 \text{ mm c/c}$

Use M20 concrete and Fe415 steel.

Draw to a suitable scale:

- a. Plan of staircase
- b. Sectional elevation
- c. Bar bending schedule

(20 Marks)

PART - B

- Design a combined footing for two column size 400×400 mm and 600×600 mm carry loads of 600 kN and 1000 kN respectively. The c/c distance of the column is 4m. Take SBC of soil as 150 kN/m². Use M20 concrete and Fe415 steel.
 - Draw the following to the suitable scale:
 - a. Sectional elevation
 - b. Plan of base slab
 - c. C/S of different places to show the minimum details of shear reinforcement.

(60 Marks)

- Design a cantilever retaining wall to retain earth embankment 5m high above ground level. The density of earth is 18 kN/m³ and its angle of repose is 30°. The embankment is horizontal at the top. The safe bearing capacity of the soil is 200 kN/m² and the coefficient of friction between soil and concrete is 0.5. Adopt M20 concrete and Fe415 steel. Draw to a suitable scale:
 - a. Cross section of retaining wall
 - b. Longitudinal section
 - c. Sectional plan at top and bottom showing details of reinforcement in base slab. (60 Marks)

* * * * *