

Date USNa V E

Eighth Semester B.E. Degree Examination, June/July 2019 Boundary Layer Theory

		1 100		
Time: 3 hrs.		THE OF	Max. Marks: 100	
Note: Answer any FIVE full questions, selecting				
at least TWO questions from each part.				
		PART - A		
1	a.	Briefly explain the viscous flow phenomena for the flow over.		
		(i) Thin airfoil (ii) Circular cylinder.	(10 Marks)	
	b.	Name the Boundary conditions used in viscous flow and explain any two of them.	(10 Marks)	
2	a.	Derive the momentum equation for viscous flows.	(10 Marks)	
	b.	Briefly explain the mathematical characterization of basic equations of viscous flo	WS.	
			(10 Marks)	
3	a.	Classify the solutions of viscous flow equations.	(05 Marks)	
	b.	Describe the flow between plates with bottom injection and top suction.	(07 Marks)	
	C.	Briefly explain the Poiseuille steady flow through ducts.	(08 Marks)	
	/			
	<	Also derive the equation for Di	colocement	
4	a.	Mention the Boundary layer properties. Also derive the equation for Di	(10 Marks)	
	1	thickness. Briefly, explain the concept of thermal boundary layer with suitable sketch.	(10 Marks)	
	b.	Briefly, explain the concept of thermal boundary layer with suitable sketch.	(10 Marks)	
		PART – B		
5	0	Describe the Blasius solution for flat – plate flow.	(10 Marks)	
3	a. b.	Briefly describe the Reynolds analogy as a function of pressure gradient.	(10 Marks)	
	υ.	Briefly describe the regions unulogy as a function of present general		
6	а	Explain the concept of small-disturbance stability in laminar flows.	(10 Marks)	
v	b.	Classify and explain the different boundary layer transition processes. A	lso explain	
	0.	Boundary – layer Receptivity.	(10 Marks)	
7	a.	Write a note on physical description of turbulence.	(10 Marks)	
,	b.	Explain the fluctuations and time averaging in turbulent flow.	(10 Marks)	
	٠.			

8 a. Describe the process of measurement of turbulence using hot wire anemometer.
b. Explain Schlieren technique of flow visualization. (10 Marks)

* * * * *