

Seventh Semester B.E. Degree Examination, June/July 2019 Aircraft Structures – II

Time: 3 hrs.

Max. Marks:100

Note: Answer any FIVE full questions, selecting atleast TWO questions from each part.

PART - A

- 1 a. Sketch and explain V-n diagram of a typical aircraft with all important structural design limits. (08 Marks)
 - b. An aircraft of 45 kN lands on a deck of an aircraft carrier and is brought to rest by means of arrestor hook, if the deceleration included by the cable is 3g. Determine the tension T in the cable, the load on the under carriage strut and shear and axial loads in the fuselage aft at the section A-A is 4.5 kN. Also calculate the length of the deck covered by the aircraft before it is brought to rest if touchdown speed is 25 ms⁻¹. [Refer Fig.Q1(b)] (12 Marks)

- 2 a. Derive an expression for direct stress for a unsymmetrical cross-sectional-beam bending condition, when M_x and M_y are acting on the beam. (08 Marks)
 - b. A beam having a cross-section as shown in the Fig.Q2(b) is subjected to a bending moment of 1500 N-m in a vertical plane. Calculate the point at which the direct stress acts. (12 Marks)

Fig.Q2(b)

- 3 a. Derive an expression for shear flow acting on open section beam.
- (10 Marks)
- b. Consider a C section beam as shown in Fig.Q3(b), find the shear center for the same cross-section, if h = 10mm and b = 15mm and $S_y = 1200$ N by deriving an expression for shear center. (10 Marks)

(10 Marks)

- 4 a. Deduce an expression for shear flow in closed section beams. (08 Marks)
 - b. A thin walled closed section beam has a symmetrical cross-section as shown in Fig.Q4(b). Each wall of section is flat, thickness (t) and shear modulus (G). Calculate the shear center from point 4. (12 Marks)

PART + B

- 5 a. Derive an expression for thin plate bukling to find direct critical stress.
 - b. A beam as shown in the Fig.Q5(b) is assumed to have complete tension field web. If the cross-sectional areas of the flanges and stiffners are 350 mm² and 300mm² respectively. Elastic modulus of each flange is 750 mm³, determine the maximum stress in a flange and find whether the stiffners will buckle. The thickness of the web is 2 mm and second moment of Area of the stiffner about an axis in the plane of the web is 2000 mm⁴. E = 70000 N/mm². (10 Marks)

a. The wing section shown in Fig.Q6(a) has been idealized such that the booms carry all the direct stresses. If the wing section is subjected to a bending moment of 300 kNm applied in a vertical plane. Calculate the direct stress in the booms. [Boom Areas: B₁ = B₆ = 2580 mm², B₂ = B₅ = 3880 mm², B₃ = B₄ = 3230 mm²] (10 Marks)

b. A light passenger carrying aircraft fuselage has the circular cross-section shown in Fig.Q6(b). The cross-sectional area of each stringer is 100 mm² and vertical distance is also given in Fig.Q6(b) with respect to each stringer from the mid line of the fuselage section. If the fuselage is subjected to a bending moment 200 kNm applied in the vertical plane of symmetry. Calculate the direct stress distribution. (10 Marks)

7 a. Explain in brief 3 design principles used in aircraft structural analysis.

(10 Marks)

b. Write short note on aircraft (i) Design criteria (ii) Fatigue Damage.

(10 Marks)

8 a. Enlist the advantages of rivets over welded and bolted joints.

(05 Marks)

b. A 200mm × 150mm × 10mm angle, carrying a load of 200 kN is to be welded to a steel plate by fillet welds as shown in Fig.Q8(b). Find the lengths of the weld at the top and bottom if allowable shear stress in the weld is 102.5 N/mm². The distance between the neutral axis and the edges of the angle section are 144.7mm and 55.3mm respectively.

(15 Marks)

* * * * *