P. Fr	HH				
USN					

First Semester MCA Degree Examination, Dec.2015/Jan.2016 **Discrete Mathematical Structures**

Note: Answer any FIVE full questions. Time: 3 hrs.

Max. Marks:100

- Write the following in symbolic form and establish if the argument is valid: If A gets the supervisor's position and works hard, then he will get a raise. If he gets a raise, then he will buy a new car. He has not bought a new car. Therefore A did not get the supervisor's 1 position or he did not work hard.
 - b. Verify the following without using truth tables:

from or ne did not work hards from or ne did not work hards for the following without using truth tables:

(05 Marks)

$$(x) \rightarrow (x) \wedge (x) \wedge (x) \wedge (x) \rightarrow (x) \wedge (x) \rightarrow (x) \rightarrow (x) \wedge (x) \wedge (x) \rightarrow (x) \wedge (x) \wedge$$

- c. Define Tautology. Show that $[(p \lor q) \land (p \to r) \land (q \to r) \to r$ is a tautology by constructing
- Show that the following argument is invalid by giving a counter example:

that the following argument is invalid by giving a counter example:

$$[(p \land \neg q) \land (p \rightarrow (q \rightarrow r))] \rightarrow \neg r$$
(05 Marks)

Verify if the following is valid: 2

$$\forall x [p(x) \lor q(x)]; \exists x \neg p(x)$$

$$\forall x [\neg g(x) \lor r(x)]$$

- $\forall x[s(x) \rightarrow \neg r(x)] \quad \therefore \exists x \neg s(x)$ b. Prove that for all real numbers x and y, if x + y > 100, then x > 50 or y > 50.
- Determine if the argument is valid or not. All people concerned about the environment, recycle their plastic containers. B is not concerned about the environment. Therefore, B does not recycle his plastic containers. (05 Marks)
- Negate and simplify: i) $\forall x[p(x) \land \neg q(x)]$, ii) $\exists x[(p(x) \lor q(x)) \rightarrow r(x)]$.
- If N is a set of positive integers and R is the set of real numbers, examine which of the 3 following set is empty:
 - i) $\{x/x \in \mathbb{N}, 2x+7=3\}$

ii)
$$\{x/x \in \mathbb{R}, x^2 + 4 = 6\}$$

$$\{x/x \in \mathbb{R}, \quad x^2 + 4 = 6\}$$
(04 Marks)
i) $\{x/x \in \mathbb{R}, \quad x^2 + 3x + 3 = 0\}$

$$\{x/x \in \mathbb{R}, \quad x^2 + 3x + 3 = 0\}$$
Determine the number of subsets A of S such that:

- b. Let $S = \{21, 22, 23, \dots, 39, 40\}$. Determine the number of subsets A of S such that: iii) $\{x/x \in \mathbb{R}, x^2 + 3x + 3 = 0\}$
 - i) |A| = 5
 - ii) |A| = 5 and the largest element in A is 30.
 - iii) |A| = 5 and the largest element is at least 30.
 - iv) |A| = 5 and the largest element is at most 30.

- Define power set with example. Prove that if a finite set A has n elements then power set of
- A has 2ⁿ elements. a. Prove by mathematical induction that every positive integer $n \ge 24$ can be written as a sum
- b. Find an explicit definition of the sequence defined recursively by $a_1 = 7$, $a_n = 2a_{n-1} + 1$ for
 - (06 Marks)
 - Solve the first order recurrence relation $a_1 = 7a_{n-1}$, $n \ge 1$ given that $a_2 = 98$.

- For any non empty sets A, B, C, prove the following:
 - i) $A \times (B \cup C) = (A \times B) \cup (A \times C)$
 - ii) $A \times (B C) = (A \times B) (A \times C)$

(08 Marks)

- b. Define one-one and onto function. Let $f: Z \to z$ (set of integers) be defined by f(a) = a + 1, $\forall a \in Z$ find whether f is one to one or onto or both or neither. (06 Marks)
- c. ABC is an equilateral triangle whose sides are of length 1 cm each. If we select 5 points inside the triangle, prove that atleast two of these points are such that the distance between (06 Marks) them is less than ½ cm.
- Let $A = \{1, 2, 3, 4\}$ and let R be the relation on A defined by xRy if and only if x divides y. Find digraph of R and list in-degree and out-degree of all vertices. (06 Marks)
 - b. Let $A = \{1, 2, 3, 4, 5\}$. Define a relation R on $A \times A$ by $(x_1, y_1)R(x_2, y_2)$ if and only if $x_1 + y_1 = x_2 + y_2$. Verify that R is an equivalence relation on A × A. (06 Marks)
 - Let $A = \{1, 2, 3, 4, 6, 12\}$. On A, define the relation R by aRb if and only if a divides b. Prove that R is a partial order on A. Draw the Hasse diagram for this relation. (08 Marks)
- Explain Konigsberg bridge problem. 7

(06 Marks)

Define isomorphism and show that the following graphs are isomorphic.

(06 Marks)

- Fig.Q7(b) Define Hamilton cycle. How many edge-disjoint Hamilton cycles exist in the complete graph with seven vertices? Also draw the graph to show these Hamilton cycles. (08 Marks)
- Show that the complete bipartite graph K_{3,3} is non-planar. 8

(06 Marks)

Explain the steps in the merge sort algorithm.

(06 Marks)

Define spanning tree of weighted graph and using Kruskal's algorithm, find a minimal spanning tree for the weighted graph shown below:

(08 Marks)