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1. Introduction and the main results

For a given triangle ABC, we denote by a, b, c its side-lengths, by S its area, by p its semi-perimeter, and by R and r its
circumradius and inradius, respectively.

In the year 1925, Georg Pélya (1887-1985) and Gabor Szegt (1895-1985) ([ 1, p. 161, Problem 17.1]; see also [2, p. 116])
proved the following beautiful and famous inequality which is known as the Pélya-Szegé inequality in the triangle ABC:

V3
4
which may be compared with Weitzenbdck’s inequality in the triangle ABC (see, for example, [3, p. 42, Theorem 4.4]; see
also [4, p. 112, Section 6.3]):
@ +b*+c?

4v3
as well as another known inequality [3, p. 43, Theorem 4.5]:
ab + bc + ca

4y3

s < X2 (abo)3, (1.1)
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From among several extensions and modifications of the Pélya-Szegé inequality (1.1), we first recall the following
sharpened version given by Leng [5] (see also [6, p. 194]):

1
3 —b)?(b —c)*(c — a)®\?
s < V3 @aboyd (1— @D b= —a ) (12)
4 (abc)?
Chen [7] (see also [6,8]), on the other hand, strengthened the Pélya-Szegd's inequality (1.1) as follows:
V3 2 (2r 3
S<— (abo)3s | — ) . 13
B ot (2) 1

More recently, Chen [9] gave a beautifully refined version of the Pélya-Szegé inequality (1.1), which we state here as
Theorem 1 below.

Theorem 1. The best positive constant k for the following inequality:

(abc)s — gﬁs >k (%) [(b+c—2a) + (c+a—2b) + (a+b—2c)?] (1.4)
is given by
k = F(xo) ~ 0.12512379476902 - - - ,
where
o (x+2? a4 1
F(x) == BGT T ([4(x+ 2)413 — 5f:-:[(x+ D+ 3)]2) (x> 0)

and xy is one real root of the following equation:
6912(x + 1)3(5x% + 18x + 12)° — (x + 2)3(x + 3)°(x* — 14x — 12)® = 0.
The main object of this paper is to present yet another refinement of the Pdlya-Szego inequality (1.1) given by Theorem 2
below.
Theorem 2. The best positive constant k for the following inequality:
V3
4

is the real root on the interval (

(abc)5 — S > kr(R — 2r) (1.5)

1. 28

, 20) of the following equation:

80621568k%% — 1169012736k** + 2306112768k** — 1986308842752k?°
—271161740638512k'® — 7075252951678008k'® — 72860319298449837k'*
—315039331520882532k'? + 143128010909935188k'® + 407040335182644176k°

+ 175081049919823564k® — 18908198108992k* + 539361792k*> — 5184 = 0. (1.6)
Furthermore, the constant k has its numerical approximation given by
k ~ 1.145209656 - - - .

2. Preliminary results and lemmas

In order to prove Theorem 2, we require several lemmas.

Lemma 1. If the following inequality:
3
% (abc)3 —S > kr(R—2r) (k> 0) 2.1)
holds true, then
3
0<ks V3.

Proof. First of all, Chen [7] (see also [8]) derived the following inequality:

V3 (abc)3 < S (R)Z . (2.2)
2r

4
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By using Chen'’s inequality (2.2), we find that

1
R\? 3
s() —Sgi(abc)%—sgkr (R — 2r).
2r 4

Thus, in view of the known identity S = rp, we get the following inequality:

\/ R 1
2r P p
R—2r  2Rr+2r
Consequently, we have

k

A

k < min (L> .
~/2Rr + 2r

By means of the following known inequalities [3, p. 52]:

27
p* > 7Rr and p = 3/3r,

we obtain
p P 3
> =" V3 (2.3)
V2Rr +2r 4p? N 2p 4
27 33
The inequality (2.3) holds true if and only if the triangle is an equilateral triangle. So
. ( p ) 33
min = .
V2Rr 4+ 2r 4
We then find that
3
k<= V3.
4

Our proof of Lemma 1 is thus completed. O

Lemma 2 (See [10,11]). For a polynomial p(x) with real coefficients given by
p(x) = agx" + X" + -+ ay,
if the number of the sign changes of the revised sign list of its discriminant sequence:
{D1(p), D2(p), - ... Dn(p)}
is v, then the number of the pairs of distinct conjugate imaginary roots of p(x) equals v. Furthermore, if the number of non-

vanishing members of the revised sign list is |, then the number of the distinct real roots of p(x) equals | — 2v.

Lemma 3 (See [12-14]). Let G(R, r, p) be a function of the measurements R, r and p for a triangle. Suppose also that the functions
fi(R, 1) and f5(R, r) depend upon Rand r.
(i) If the following homogeneous inequality in a triangle:
GR,r,p) =20 (>0, (2.4)
which is equivalent to the inequality:
pz (iR, 1),

holds true for any isosceles triangle whose top angle is greater than or equal to 60°, then the inequality (2.4) holds true for
any triangle.
(ii) If the homogeneous inequality (2.4) in a triangle, which is equivalent to the following inequality:

p = (9fR, 1)

holds true for any isosceles triangle whose top angle is less than or equal to 60°, then the inequality (2.4) holds true for any
triangle.

Lemma 4 (See [11]). Define the polynomials f (x) and g(x) by
fX) = apx" +a;x" '+ +a,
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and

g(X) = box™ + bix™ ' + - + bp,.
If

ag#0 or by #0,

then the polynomials f (x) and g(x) have common roots if and only if

a a a --- a, 0 0
0 a a -+ a1 @y
_ 0 0 aO P “ e an B
R(f’g)_bo by by -+ v e o0 =0,
0 bg by -+ -+ . .. 0
0 0 0 - by by - by

where R(f, g) is Sylvester’s resultant of f(x) and g(x).
3. Demonstration of Theorem 2

In this section, we apply the results and lemmas of the preceding section in order to prove Theorem 2.
Proof. In light of the known identities [15, p. 52]:

abc =4Rrp and S =r1p,
the inequality (1.5) is equivalent to the following inequality:
V3
4
Furthermore, the inequality (3.1) is equivalent to the following inequality:

(4Rrp)3 — rp = kr (R — 2r). (3.1)

3
L V3R 2 Plp + kR - 2n)P. (32)

Consequently, we have

m + <3I<(R —2r)r — ZﬁR2> PP +32R -2 p + K2R —-2r)°r <0. (3.3)
Obviously, this last inequality (3.3) holds true when R = 2r. In the case when R > 2r, we define a polynomial h(p) by

h(p) == p® + <3k(R —2r)r — % \@Rz) p* + 3k*(R — 2r)%rp + K} (R — 2r)°r.

Then the discriminant sequence of h(t?) is given by
[ o1 R -1 iR 1) - 2R, 1) - R K- (R 1) - 3R 1) - (R = 2r)°R*r?,
K- @3(R,1) - 0aR, 1) - (R—2r)°R°r°, —k° - 03 (R, 1) - (R — 2r)°R%r®],
where
¢o1(R,r) =8 kr® — 41kR + «/§R2,
@R, 1) = 16 kr®> — 8 kR + ~/3R?,
@3(R, 1) = 3+/3R* — 28 rkR + 56 kr?
and
@a(R, 1) = 18 kr*> — 9TkR + +/3R%.
By applying Lemma 1 and the fact that R > 2r, the following four inequalities:
¢i(R,T) >0 (i=1,2,3,4)
hold true obviously. Then the revised sign list of the discriminant sequence of h(t?) is just as given below:
[1,1,1,1,1, —1]. (3.4)
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The number of the sign changes of (3.4) is 1. Thus, in view of Lemma 2, the polynomial h(t?) has 4 distinct real roots.
Moreover, the polynomial h(p) has 2 distinct positive real roots (see, for details, [ 16]). So the inequality (3.3) can be rewritten

in its equivalent form:

fiR, 1) =p = fo(R,1).

By making use of Lemma 3, we easily see that the inequality (3.3) holds true if and only if the triangle is an isosceles triangle.

We now let
a=2 and b=c=x (x> 1).
Then the inequality (1.5) is equivalent to the following inequality:

? (2x2)% —Vx2—12k (()‘_2)2> .

2(x+ 1)

(i) In the case when x = 2, the inequality (3.5) holds true obviously.
(ii) In the case when

x>1 and x# 2,

the inequality (3.5) is seen to be equivalent to the following inequality:

x+ 1) (V31 —av 1)
2(x — 2)2

Define the function H(x) by

x+ 1 (V3xh} - 4w = 1)
2(x — 2)?

By calculating the derivative for H(x), we get

V3Y4YxJx—1) (x+ 1)(x® — 16x — 8) + 12(x + 1)(5x — 4)
6(x —2)3v/x* — 1 ’

k=

H(x) = (x € (1,2) U (2, 0)).

H'(x) =

which, upon setting H' (x) = 0, yields

V34 (x — 1) (x + 1)(x* — 16x — 8) + 12(x + 1)(5x — 4) = 0.
It is easy to find from (3.7) that

x* —16x — 8 < 0,
which implies that

1<x<2 or 2<x<8+6v2.

It is not difficult to observe that the roots of Eq. (3.7) must be the same as the roots of the following equation:
(x® —95x"2 + 3703 x"" — 74949 x'° + 808572 x° — 4034688 x® + 3454464 x” + 13215792 x° — 15891072 x°
— 11578112 x* + 17747968 x> + 790528 x> — 6193152 x + 1769472)(x + 2)(x + 1)3(x — 2)> = 0.

Since the range of the roots of Eq. (3.7) is given by
(1,2)U (2, 8+ sz) :

the roots of Eq. (3.7) must be the same as the roots of the following equation:

x3 —95x" 4+ 3703x"" — 74949 x'° 4 808572 x% — 4034688 x® + 3454464 x” + 13215792 x° — 15891072 x°
— 11578112 x* + 17747968 x> + 790528 x> — 6193152 x + 1769472 = 0.

Now, if we define the polynomial q(x) by

q(x) := x> — 95x'2 + 3703 x"" — 74949 x'° + 808572 x° — 4034688 x® + 3454464 x” + 13215792 x°
— 15891072 x° — 11578112 x* + 17747968 x> + 790528 x* — 6193152 x + 1769472,

(3.8)

(3.9)

(3.10)
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then the revised sign list of the discriminant sequence of q(x) is given as follows:
[t,1,-1,11,1,1,1,1,1,-1,1, -1]. (3.11)

Therefore, in view of Lemma 2, we know that Eq. (3.9) has 5 pairs of distinct conjugate imaginary roots and 3 distinct real
roots. For

q(=2) <0, q(0) > 0, q(2) > 0, q3) <0, q(17) <0 and q(24) > 0,
we know that Eq. (3.9) has only one real root on the interval (1, 2) U (2, 8+ 6\/5) .
Denote by
Xo = 2.337099889 - - -
the root of Eq. (3.9) which lies in the interval (2, 3). Then

uy+U<JiM@%—4J%—1>

Z(XO — 2)2

min{H(x)} =: H(xg) =

23
1.1452096 - - - € <1, —) (3.12)
20
It, therefore, follows that the maximum value of k is H(xg).
We next prove that H(xp) is the root of Eq. (1.6). For this purpose, we consider the following nonlinear algebraic equation
system:

(X0 + 1)(up — vo) — 2(xo — 2)’t =0
uS —432x5 =0

vg —16x; +16 =0
h(xo) = 0.

(3.13)

It is easy to see that H(xp) is also the solution of the nonlinear algebraic equation system (3.13). If we eliminate the ug, v
and x, ordinals by resultant (by using Lemma 4), then we get

p1(6)p2(8)p3(E)pa(t) = 0, (3.14)

where

p1(t) = 1289945088 t*° — 80152672960512 t2* — 112148121563136 t?2 — 61391248256544768 t*°
— 2341074066668464896 t '8 — 7182680904477244800 t'6 4 153376610542407735984 t 14
—118924209115815414240 t 12 — 701301826334736491400 t 1° + 3562415035017469718768 t°
+ 10364657150848707001675 t® — 55040931733349010016 t*
+31697987689208832 t* — 7549987180176,

p2(t) = 80621568t%° — 1169012736t + 2306112768t* — 1986308842752t%° — 271161740638512t'8
—7075252951678008t '® — 72860319298449837t'* — 315039331520882532t 2
+ 143128010909935188t'° + 407040335182644176t%
+175081049919823564t% — 18908198108992t* + 539361792t> — 5184,

p3(t) = 109049173118505959030784 t>?
+ 1731646344535315376429334528 t°°
+26176397897252997561239564451840 t 4
—2157113478743472316050391009591296 t°
+96285828119422129204570177941798912 t*
— 4620237125675523872910410325034008576 t*
+ 18310474736736595599527123831733878784 t°
+ 1660928888587650856918069069179254734848 t*°
— 31593208873012526030049394182328317640704 t>°
+ 4690026916103512850737032526548866722430976 t>
+ 134813681107769609317603243217463634984697856 t >
+734979188543992577890673868750641219672997888
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— 5053568929290494598689554518897577791776686080 t2
—43391037892440148424133203652063242439686750208 t
+556133885780667323878061294504685472263264878592 t%*
— 1262878804397138107015109951458494178122338107392 t*
— 1397118451774316048319200483729727853340468062464 t*°
+5844608792227356420167656517180609331523722701568 t '8
+ 14506317033659270608132528797103125132048309916576 t '°
+15881156573368175727834239369823051173835954591376 t '
+7251649956998284021580488430996425029404359926489 t 12
+ 16890973769944612500834739229379176877309052576 t °

+ 16326232453597840365093106690850683154726656 t°
+4697513294781725869890298817642188956576 t°

+ 661302759480584975633209470927450624 t*

+50195901378320989663410067857408 t2
+ 1787630646346469333194109184

pa(t) == 109049173118505959030784 t>2

—5042706387932511810481029120 t*°
+23718553175227947895407 1525687296 t*8

— 16014880610674766168713970621349888 0
+172305658761861817856339903325929472 t4

— 1374341528145008523229874965287272448 t*

— 363944398148296975427328378161174937600 t*°

+ 17870285068446288294573103221072394715136 8
+572016176152015467009339313219645068017664 t°

+ 1976057760202715502842240634133562165035008 34

— 23780408261875252593745102833056765190340608 t>2
+279284379799342130859337716413966139119370240 ¢*°
+2868165962302296804653584111904006054064095232 28

— 17926414041425242615175719877591591415146741760 t2°

— 86540271722115435563245881995144794203767881728 24
+91913668928116760451784769156036687629772980224 %2

+ 1442318336309549831979159245819747967508523923200 t 2°
+4653225657821428741228779880161897056765597252352 t 18
+7854535278157154395904067458515096323570177067936 ¢ '
+7657808127260536519462564306169403708733858520080 ¢ 1
+3681313578029876351022920680459739569535303339385 t 12
— 10481487670276498331083512816840708439929120992 ¢ 1°
+48536765456337201047605841282542168844742400 t®
—10990122608200382363389997436230901430368 t°

+ 3435397925462976127637720888829762048 t*

— 1212516161444277820257536568434688 t2
+376130813743642388301942591744.

The revised sign list of the discriminant sequence of p(t) is given by

[t,1,1,-1,111,-1,-1,-1,-1,1,11,-1,-1,1,-1,1,1,1,1, 1, 1, =1, 1].

The revised sign list of the discriminant sequence of p3(t) is given by

(t,-11111-1,-1,-1,11,-1,-1,1,11,-1,1,-1,1,1,1, -1, -1, 1,

767

(3.15)
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-1,1,1,1,-1,1,-1,-1,-1,1, -1, -1, -1,-1,-1,1, -1, -1, -1, 1, —1,
1,1,1,—-1,1,1]. (3.16)
The revised sign list of the discriminant sequence of p4(t) is given by
,1,-1111,11,1,-1,1,-1,-1,1,-1,-1,-1,1,-1,1,1,1, -1, -1, -1, 1, —1,
-1,1,-1,1,11,-1,-1,-1,1,-1,-1,-1,1,1,-1,1,1,1, -1, 1,1, 1, —1, 1]. (3.17)

So the number of the sign changes of the revised sign list of (3.15) is 10. Thus, by applying Lemma 2, we find that the following
equation:

pi(®) =0 (3.18)

has 6 distinct real roots. Also, by using the function “realroot(- - -)” in Maple (Version 9.0) [ 17, pp. 110-114], we can find that
Eq. (3.18) has 6 distinct real roots in the following intervals:

1 1 19 39 997 3989 1 1
16°8]° 8’16’ 4’ 16 |’ 8 16’

39 19 3989 997
——,—— | and |———,—|.
16 8 16 4

(3.19)

So Eq. (3.18) has no real root on the interval (1, g—g) Moreover, the number of the sign changes of the revised sign list of

(3.16) and (3.17) are both 26. Thus, by appealing to Lemma 2, we see that the following equations:

p3(t) =0 (3.20)
and

pa(t) =0 (3.21)

have both 26 pairs of distinct conjugate imaginary roots. Consequently, Eqs. (3.20) and (3.21) have no real root.
From (3.12), we can find that H(xp) is the root of the following equation:

p2(t) = 0. (3.22)

It follows that H(xo) is the root of Eq. (1.6).
The proof of Theorem 2 is thus completed. O

4. Remarks and observations

In this section, we present a number of remarks and observations which are relevant to the foregoing developments.

Remark 1. By applying the above analytical techniques mutatis mutandis, we can also show that the best positive constant

k for the inequality (1.4) is the real root on the interval (75, 1) of the following equation:

711559752519106944 k'® 4+ 316248778897380864 k'® — 3800109748278481632 k'
—11531837192336629407 k'° + 2607254040139319556 k'
— 56760406902842186385 k'* 4 3751820005736319930 k"
+ 8268108002201410434 k'* 4 12069294416915771034 k!
— 1042069673906565390 k'® + 2878227242413204194 k°
— 666644248788536628 k® + 47871914625009990 k’
— 1369374355945116 k® 4- 5003949589506 k> — 102324963501 k*

— 278510508 k* — 3222288 k* + 576k — 32 = 0. (4.1)

Remark 2. By means of the software Bottema (see [ 18-20]) which was invented by Lu Yang, we cannot only obtain the same
result as above, but also find that the best positive constant k for the following inequality:

? (abe)3 — S < kR(R — 2r) (4.2)

1 7

is the real root on the interval (ﬁ, ﬁ) of the equation given below:

171382426877952 k** — 18337919675940864 k*? + 911698970389401600 k*°
— 27829451391907737600 k® 4 582228104028327869184 k*°
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— 8731603453259044776960 k** + 95562077894969708786688 k>

— 782962684661804314014720 k*° + 4977711054259411004720640 k*®

— 23445637706440079778719520 k*® + 77857860174501407407054848 k**

— 85235528600240500366155072 k*? + 46539122023111810136151600 k*°

— 15072105390562765604035152 k'® + 1024477253725366529541891 k'®

+ 128697762399197003007048 k'* 4 102562175760518598173748 k'?

— 6838928862950990759368 k'® 4 163979025717344216850 k®

— 1492951540781714760 k® + 1918013888842308 k*

— 856636125192 k* 4+ 129140163 = 0. (4.3)
Moreover, the constant k can be numerically approximated by

k ~ 0.5800733927 - - - .

Remark 3. We perform all of the aforementioned operations in this paper with the computer software Maple (Version 9.0).

5. A set of open problems

In this concluding section of our paper, we pose two closely-related problems which would refine the Pélya-Szego
inequality in a tetrahedron (see [21, pp. 188 and 197]).

Problem 1. Let S, (k = 1,2, 3,4) denote the area of the face of a given tetrahedron and let V be the volume of the

tetrahedron. Suppose also that R and r are the circumradius and the inradius of the tetrahedron, respectively. Determine
the best constants K; and K; for the following two inequalities:

4
<H sk> —V K’ (R—3r) (5.1)
k=1

|\
Nlw
oolw

w
NN

and

\]
Nlw
ool

4
<]_[ s,<> —V 2 KRr(R = 3r). (5.2)
k=1

Problem 2. Let
i = |AAl (1,j=1,2,3,4;1#])

denote the length of the edge of a given tetrahedron and let V be the volume of the tetrahedron. Suppose also that R and
r are the circumradius and the inradius of the tetrahedron, respectively. Determine the best constants £; and &, for the
following two inequalities:

2 1
‘g( I1 p;> —V > &R —-3r) (5.3)
1<i<j<4
and
2 1
V2 ( I p;> —V > &Rr(R — 3r). (5.4)
12 1<i<j<4

Each of these two Open Problems has challenged the authors for quite sometime. The solutions to either or both of these
problems (if and when found by any interested reader) would naturally interest the authors, too, a great deal.
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