Products of distance degree regular and distance degree injective graphs

Medha Itagi Huilgol , M. Rajeshwari \& S. Syed Asif Ulla

To cite this article: Medha Itagi Huilgol , M. Rajeshwari \& S. Syed Asif Ulla (2012) Products of distance degree regular and distance degree injective graphs, Journal of Discrete Mathematical Sciences and Cryptography, 15:4-5, 303-314, DOI: 10.1080/09720529.2012.10698382

To link to this article: https://doi.org/10.1080/09720529.2012.10698382

Published online: 03 Jun 2013.

Submit your article to this journal

Article views: 26

Citing articles: 1 View citing articles

Products of distance degree regular and distance degree injective graphs

Medha Itagi Huilgol ${ }^{1, *}$
M. Rajeshwari ${ }^{2, \dagger}$
S. Syed Asif Ulla ${ }^{1, \S}$
${ }^{1}$ Department of Mathematics
Bangalore University
Central College Campus
Bangalore 560001
India
${ }^{2}$ Department of Mathematics
Acharya Institute of Technology
Bangalore 560090
India

Abstract

The eccentricity $e(u)$ of a vertex u is the maximum distance of u to any other vertex in G. The distance degree sequence (dds) of a vertex v in a graph $G=(V, E)$ is a list of the number of vertices at distance $1,2, \ldots \ldots, e(u)$ in that order, where $e(u)$ denotes the eccentricity of u in G. Thus the sequence $\left(d_{i_{0}}, d_{i_{1}}, d_{i_{2}} \ldots, d_{i_{j}}, \ldots\right)$ is the dds of the vertex v_{i} in G where $d_{i_{j}}$ denotes number of vertices at distance j from v_{i}. A graph is distance degree regular (DDR) graph if all vertices have the same dds. A graph is distance degree injective (DDI) graph if no two vertices have same dds.

In this paper we consider Cartesian and normal products of DDR and DDI graphs. Some structural results have been obtained along with some characterizations.

Keywords: Distance degree sequence, Distance degree regular (DDR) graphs, Distance degree injective (DDI) graphs, Cartesian and Normal product of graphs.

[^0]
Journal of Discrete Mathematical Sciences E Cryptography

Vol. 15 (2012), No. 4 \&5, pp. 303-314
© Taru Publications

1. Introduction

Unless mentioned otherwise for terminology and notation the reader may refer Buckley and Harary [4], new ones will be introduced as and when found necessary.

Products in graphs have always given more generalized results compared to the graphs involved in the product itself. It is also a powerful tool to construct bigger graphs given smaller ordered (sized) graphs. Many parameters are tested in the products in literature [6], [7], [8], etc. Among many products defined between graphs the cartesian product is the most used one. Recently a whole monograph by Imrich et. al., [10] is dedicated to graphs and their cartesian product. The cartesian product is defined as,

The cartesian product of two graphs G and H, denoted $G \square H$, is a graph with vertex set $V(G \square H)=V(G) \times V(H)$, that is, the set $g \in V(G) \& h \in V(H)$.

The edge set of $G \square H$ consists of all pairs [$\left.\left(g_{1}, h_{1}\right),\left(g_{2}, h_{2}\right)\right]$ of vertices with $\left[g_{1}, g_{2}\right] \in E(G)$ and $h_{1}=h_{2}$ or $g_{1}=g_{2}$ and $\left[h_{1}, h_{2}\right] \in E(H)$.

Also the normal product is defined as,
The normal product of two graphs G and H, denoted $G \oplus H$, is a graph with vertex set $V(G \oplus H)=V(G) \times V(H)$, that is, the set $g \in V(G), h \in V(H)$ and an edge $\left[\left(g_{1}, h_{1}\right),\left(g_{2}, h_{2}\right)\right]$ exists whenever any of the following conditions hold good:
(i) $\left[g_{1}, g_{2}\right] \in E(G)$ and $h_{1}=h_{2}$,
(ii) $g_{1}=g_{2}$ and $\left[h_{1}, h_{2}\right] \in E(H)$,
(iii) $\left[g_{1}, g_{2}\right] \in E(G) \&\left[h_{1}, h_{2}\right] \in E(H)$.

The distance $d(u, v)$ from a vertex u of G to a vertex v is the length of a shortest u to v path. The eccentricity $e(v)$ of v is the distance to a farthest vertex from v. If, $\operatorname{dist}(u, v)=e(u),(v \neq u)$, we say that v is an eccentric vertex of u. The radius $r(G)$ is the minimum eccentricity of the vertices, whereas the diameter $d(G)$ is the maximum eccentricity. A vertex v is a central vertex if $e(v)=r(G)$, and a vertex is an antipodal vertex if $e(v)=d(G)$. A graph is self-centered if every vertex has the same eccentricity, i.e., $r(G)=d(G)$.

The distance degree sequence ($d d s$) of a vertex v in a graph $G=(V, E)$ is a list of the number of vertices at distance $1,2, \ldots, e(v)$ in that order, where $e(v)$ denotes the eccentricity of v in G. Thus, the sequence $\left(d_{i_{0}}, d_{i_{1}}, d_{i_{2}} \ldots ., d_{i_{j}}, \ldots.\right)$ is the dds of the vertex v_{i} in G where, $d_{i_{j}}$ denotes
number of vertices at distance j from v_{i}. The concept of distance degree regular (DDR) graphs was introduced by G. S. Bloom et. al., [1], as the graphs for which all vertices have the same dds. For example, the three dimensional cube $Q_{3}=K_{2} \times K_{2} \times K_{2}$ is a DDR graph with each vertex having its dds as $(1,3,3,1)$. Clearly, $d_{i_{1}}$ denotes the degree of the vertex v_{i} in G and hence, in general, a DDR graph must be a regular graph; but, it is easy to verify that a regular graph may not be DDR. In Bloom [1], detailed study of DDR graphs can be found and one of the fundamental results therein states that "Every regular graph with diameter at most two is $D D R^{\prime \prime}$. Bloom, Quintas and Kennedy [2] have dealt many problems concerning distance and path degree sequences in graphs. Halberstam et. al., [9] have dealt in particular the distance and path degree sequences for cubic graphs. It is worth to mention that computer investigation and generation of cubic graphs is done by Brinkmann [3] and Bussemaker et. al., [5]. In [12], Itagi Huilgol et. al., have listed all DDR graphs of diameter three with extremal degree regularity. In the same paper they have shown the existence of a diameter three DDR graph of any arbitrary degree regularity. In [13], Itagi Huilgol et. al., have constructed DDR graphs of arbitrary diameter. Also, they have studied the DDR graphs with respect to other parameters.

A graph is distance degree injective (DDI) graph if no two vertices have same dds. These graphs were defined by G.S. Bloom et. al., in [2]. DDI graphs being highly irregular, in comparison with the DDR graphs, at least the degree regularity is looked into by Jiri volf in [11]. A particular case of cubic DDI graphs is considered by Martenez and Quintas in [14]. There are very few examples of DDI graphs, so it is important to get DDI graphs from smaller (sized/ordered) DDI or other graphs as products.

In this paper we consider cartesian and normal products of DDR and DDI graphs. For some products both necessary and sufficient conditions have been obtained.

2. Cartesian product of DDR and DDI graph

In this section we consider cartesian products of DDR and DDI graphs.

Theorem 2.1: Cartesian product of two graphs G_{1} and G_{2} is a $D D R$ graph if and only if both G_{1} and G_{2} are DDR graphs.

Proof. Let G_{1} and G_{2} be two DDR graphs having the dds of each vertex $\left(d_{0}, d_{1}, d_{2}, \ldots . . d_{r_{1}}\right)$ and $\left(d_{0}^{\prime}, d_{1}^{\prime}, d_{2}^{\prime}, \ldots \ldots d_{r_{2}}^{\prime}\right)$ respectively, where r_{1} and r_{2} are radii of G_{1} and G_{2} respectively. In the cartesian product of any two graphs, the distance between any two vertices $\left(u_{1}, v_{1}\right)$ and $\left(u_{2}, v_{2}\right)$ is given by $d_{G_{1} \square G_{2}}\left(\left(u_{1}, v_{1}\right),\left(u_{2}, v_{2}\right)\right)=d_{G_{1}}\left(u_{1}, u_{2}\right)+d_{G_{2}}\left(v_{1}, v_{2}\right)$ as in [15]. Now let u be any vertex in G_{1} and v be any vertex in G_{2}. Then, it is very clear that the number of vertices at distance i from (u, v) in $G_{1} \square G_{2}$

$$
d_{i_{G_{1} \square G_{2}}}(u, v)=d_{i}(u)+d_{i}^{\prime}(v)+\sum_{j=1}^{i-1} d_{j}(u) d_{i-j}^{\prime}(v)
$$

Since the graphs G_{1} and G_{2} are DDR graphs $d_{i}(u)=d_{i}(x)$, $0 \leq i \leq \operatorname{diam}\left(G_{1}\right)$ for all $x \in G_{1}$ and $d_{i}^{\prime}(v)=d_{i}^{\prime}(y), 0 \leq i \leq \operatorname{diam}\left(G_{2}\right)$ for all $y \in G_{2}, d_{i_{G_{1} \square G_{2}}}(u, v)=d_{G_{G_{1} \square G_{2}}}(s, t), 0 \leq i \leq \operatorname{diam}\left(G_{1}\right)+\operatorname{diam}\left(G_{2}\right)$ for all $(s, t) \in$ $G_{1} \square G_{2}$. Hence the graph $G_{1} \square G_{2}$ is a DDR graph.

Now let $G_{1} \square G_{2}$, the cartesian product of G_{1} and G_{2} be a DDR graph. Suppose G_{1} is not a DDR graph, then there exist at least two vertices u and v having different dds i.e., $\left(d_{0}(u), d_{1}(u), d_{2}(u), \ldots . . d_{e(u)}(u)\right)$ and $\left(d_{0}(v), d_{1}(v), d_{2}(v), \ldots \ldots d_{e(v)}(v)\right)$ are dds of u and v, respectively in G_{1} and k, the minimum value of $i, 1 \leq i \leq d\left(G_{1}\right)$, such that $d_{k}(u) \neq d_{k}(v)$. Let w be any vertex in G_{2}, having the dds $\left(d_{0}^{\prime}(w), d_{1}^{\prime}(w), d_{2}^{\prime}(w), \ldots \ldots, d_{e(w)}^{\prime}(w)\right)$ and $d_{k}^{\prime}(w)$ be the number of vertices at distance k from w in G_{2}. The number of vertices at distance k from (u, w) in $G_{1} \square G_{2}$ is given by $d_{k_{G_{1} \square G_{2}}}(u, w)=$ $d_{k}(u)+d_{k}^{\prime}(w)+d_{1}(u) d_{(k-1)}^{\prime}(w)+d_{2}(u) d_{(k-2)}^{\prime}(w)+d_{3}(u) d_{(k-3)}^{\prime}(w)+\ldots+$ $d_{(k-1)}(u) d_{1}^{\prime}(w)$ and the number of vertices at distance k from (v, w) in $G_{1} \square G_{2}$ is given by $d_{k_{G_{1} \square G_{2}}}(v, w)=d_{k}(v)+d_{k}^{\prime}(w)+d_{1}(v) d_{(k-1)}^{\prime}(w)+$ $d_{2}(v) d_{(k-2)}^{\prime}(w)+d_{3}(v) d_{(k-3)}^{\prime}(w)+\ldots+d_{(k-1)}(v) d_{1}^{\prime}(w)$. Hence $d_{k_{G_{1} \square G_{2}}}$ $(u, w) \neq d_{k_{G_{1} \square G_{2}}}(v, w)$, since $d_{k}(u) \neq d_{k}(v)$ and $d_{j}(u)=d_{j}(v)$, for all $j, 0 \leq$ $j \leq k$. Hence $G_{1} \square G_{2}$ is non-DDR graph, a contradiction. Hence G_{1} should be a DDR graph. Similarly we can prove G_{2} is also a DDR graph. Hence, the result.

Theorem 2.2: If the cartesian product of two graphs G_{1} and G_{2} is DDI then both G_{1} and G_{2} are DDI graphs.

Proof. Let $G_{1} \square G_{2}$ be a DDI graph. Suppose G_{1} is not a DDI graph, then there exist at least two vertices u_{1}, u_{2} in G_{1} having the same dds, i.e., $d d s\left(u_{1}\right)=d d s\left(u_{2}\right)$. Let v_{1} be any vertex in G_{2}. Then the number of vertices at distance $l, 0 \leq l \leq e\left(u_{1}\right)+e\left(v_{1}\right)$ from $\left(u_{1}, v_{1}\right)$ is given by

$$
d_{l_{G_{1} \square G_{2}}}\left(u_{1}, v_{1}\right)=d_{i}\left(u_{1}\right)+d_{i}^{\prime}\left(v_{1}\right)+\sum_{j=1}^{i-1} d_{j}\left(u_{1}\right) d_{i-j}^{\prime}\left(v_{1}\right) .
$$

and the number of vertices at distance $l, 0 \leq l \leq e\left(u_{2}\right)+e\left(v_{1}\right)$ from $\left(u_{2}, v_{1}\right)$ is given by

$$
d_{l_{G_{1} \square G_{2}}}\left(u_{2}, v_{1}\right)=d_{i}\left(u_{2}\right)+d_{i}^{\prime}\left(v_{1}\right)+\sum_{j=1}^{i-1} d_{j}\left(u_{2}\right) d_{i-j}^{\prime}\left(v_{1}\right) .
$$

Since, $d d s\left(u_{1}\right)=d d s\left(u_{2}\right)$, we get $d_{l_{G_{1} \square G_{2}}}\left(u_{1}, v_{1}\right)=d_{l_{G_{1} \square G_{2}}}\left(u_{2}, v_{1}\right)$, for all $l, 0 \leq l \leq e\left(u_{2}\right)+e\left(v_{1}\right)$, i.e., $d d s\left(u_{1}, v_{1}\right)=d d s\left(u_{2}, v_{1}\right)$, hence $G_{1} \square G_{2}$ is not DDI, a contradiction. Hence G_{1} should be DDI. Similarly, we can prove G_{2} is also DDI. Hence, the proof.

Remark 1. Cartesian product of two DDI graphs need not be DDI. The following are the two DDI graphs whose cartesian product is not DDI.

Figure 1
Two DDI graphs whose cartesian product is not DDI

Lemma 2.1: Let G_{1} and G_{2} be two DDI graphs. Let $A=\left\{d d s\left(u_{i}\right) / u_{i} \in V\left(G_{1}\right)\right\}$ and $B=\left\{d d s\left(v_{i}\right) / v_{i} \in V\left(G_{2}\right)\right\}$. If $|A \cap B| \geq 2$ then $G_{1} \square G_{2}$ is not DDI.

Proof. Let $|A \cap B| \geq 2$ Then there exist u_{k}, u_{l} in G_{1} and v_{m}, v_{n} in G_{2} such that $d d s\left(u_{k}\right)=d d s\left(v_{m}\right)$ and $d d s\left(u_{l}\right)=d d s\left(v_{n}\right)$. Hence in $G_{1} \square G_{2}, d d s\left(u_{k}, v_{n}\right)=$ $d d s\left(u_{l}, v_{m}\right)$, making $G_{1} \square G_{2}$ non DDI. Hence, the proof

Theorem 2.3. Let G_{1} and G_{2} be any two graphs. Let u be any vertex in G_{1} and S be a subset of $V\left(G_{2}\right)$ such that no two vertices of S have same dds, then no two vertices of $\{u\} \times S$ have same dds in $G_{1} \square G_{2}$.

Proof. Let u be any vertex in G_{1} and S be a subset of $V\left(G_{2}\right)$ such that no two vertices of S have same $d d s$. Suppose there exist at least two vertices (u, v) and (u, w) in $\{u\} \times S$ having same $d d s$. Hence $d_{l_{G_{1} \square G_{2}}}(u, v)=d_{l_{G_{1} \square G_{2}}}(u, w)$, for all $l, 0 \leq l \leq e(u)+e(v)$, here $e(v)=e(w)$.

Hence $d_{l}(u)+d_{l}^{\prime}(v)+\sum_{j=1}^{l-1} d_{j}(u) d_{l-j}^{\prime}(v)=d_{l}(u)+d_{l}^{\prime}(w)+\sum_{j=1}^{l-1} d_{j}(u) d_{l-j}^{\prime}(w)$,
implies $d_{l}^{\prime}(v)+\sum_{j=1}^{l-1} d_{j}(u) d_{l-j}^{\prime}(v)=d_{l}^{\prime}(w)+\sum_{j=1}^{l-1} d_{j}(u) d_{l-j}^{\prime}(w) \rightarrow(1)$

For $l=1$, eq.(1) implies $d_{l}^{\prime}(v)=d_{l}^{\prime}(w)$.

For $l=2$, eq.(1) implies $d_{2}^{\prime}(v)+d_{1}(u) d_{1}^{\prime}(v)=d_{2}^{\prime}(w)+d_{1}(u) d_{1}^{\prime}(w)$
$\Rightarrow d_{2}^{\prime}(v)=d_{2}^{\prime}(w)$ and so on
For, $\quad l=e(v)=e(w), e q .(1) \quad$ implies $\quad d_{e(v)}^{\prime}(v)=d_{e(w)}^{\prime}(w)$. Hence, $d d s(v)=d d s(w)$, a contradiction. Hence no two vertices of $\{u\} \times S$ have same $d d s$ in $G_{1} \square G_{2}$. Hence, the proof.

Remark 2. Let S_{1} and S_{2} be two subsets of $V\left(G_{1}\right)$ such that every pair $(x, y), x \in S_{1}, y \in S_{2}$ satisfies $d d s(x) \neq d d s(y)$ and let $z \in V\left(G_{2}\right)$ be any vertex in G_{2}, then in $G_{1} \square G_{2}$, the subsets $\left\{(x, z) / x \in S_{1}\right\}$ and $\left\{(y, z) / y \in S_{2}\right\}$ are such that every pair $((x, z),(y, z)), x \in S_{1}$ and $y \in S_{2}$ satisfies $d d s(x, z) \neq d d s(y, z)$.

3. Normal product of DDR and DDI graphs

In this section we consider normal product of DDR and DDI graphs. Stevanović in [16] has considered the distance between any pair of vertices in normal product. Given two vertices $\left(u_{i}, v_{j}\right)$ and $\left(u_{k}, v_{m}\right)$ the distance between these two vertices in the normal product is given by;

$$
d_{G_{1} \oplus G_{2}}\left(\left(u_{i}, v_{j}\right),\left(u_{k}, v_{m}\right)=\max \left\{d_{G_{1}}\left(u_{i}, v_{k}\right), d_{G_{2}}\left(u_{j}, v_{m}\right)\right\}\right.
$$

Immediate conclusion we can draw as follows:

Lemma 3.1: Let $S=\left\{G_{i} / i \geq 2\right\}$. If there exist k such that G_{k} is self centred and $\operatorname{diam}\left(G_{k}\right) \geq \operatorname{diam}\left(G_{i}\right)$ for all $i \geq 2$ then normal product of all the graphs in S is a self centred graph with diameter equal to $\operatorname{diam}\left(G_{k}\right)$.

Theorem 3.1: Normal product $G_{1} \oplus G_{2}$ of two graphs G_{1} and G_{2} is DDR if and only if both G_{1} and G_{2} are DDR graphs.

Proof. Let G_{1} and G_{2} be two DDR graphs having the dds $\left(d_{0}, d_{1}, d_{2}, \ldots . . d_{d\left(G_{1}\right)}\right)$ and $\left(d_{0}^{\prime}, d_{1}^{\prime}, d_{2}^{\prime}, \ldots \ldots, d_{d\left(G_{2}\right)}\right)$ respectively, then the number of vertices at distance $i, 0 \leq i \leq \max \left\{\operatorname{diam}\left(G_{1}\right)\right.$, $\left.\operatorname{diam}\left(G_{2}\right)\right\}$ from any vertex u_{l}, v_{m} in $G_{1} \oplus G_{2}$ is given by

$$
d_{i_{G_{1}} \oplus G_{2}}\left(u_{l}, v_{m}\right)=d_{i}\left(u_{l}\right) \cdot d_{i}^{\prime}\left(v_{m}\right)+d_{i}\left(u_{l}\right) \sum_{j=0}^{i-1} d_{j}^{\prime}\left(v_{m}\right)+d_{i}^{\prime}\left(v_{m}\right) \sum_{j=0}^{i-1} d_{j}\left(u_{l}\right) .
$$

Hence, the Normal product $G_{1} \oplus G_{2}$ is DDR.
Conversely, let $G_{1} \oplus G_{2}$ be DDR. Suppose G_{1} is not DDR, then there exist at least two vertices u_{1} and u_{2} in G_{1} such that $d d s\left(u_{1}\right) \neq d d s\left(u_{2}\right)$. Let k be the minimum value such that $d_{k}\left(u_{1}\right) \neq d_{k}\left(u_{2}\right)$ and v_{1} be any arbitrary vertex in G_{2}, then the number of vertices at distance k from $\left(u_{1}, v_{1}\right)$ is given by

$$
d_{k G_{1} \oplus G_{2}}\left(u_{1}, v_{1}\right)=d_{k}\left(u_{1}\right) \cdot d_{k}^{\prime}\left(v_{1}\right)+d_{k}\left(u_{1}\right) \sum_{j=0}^{i-1} d_{j}^{\prime}\left(v_{1}\right)+d_{k}^{\prime}\left(v_{1}\right) \sum_{j=0}^{k-1} d_{j}\left(u_{1}\right)
$$

and the number of vertices at distance k from $\left(u_{2}, v_{1}\right)$ is given by

$$
d_{k G_{1} \oplus G_{2}}\left(u_{2}, v_{1}\right)=d_{k}\left(u_{2}\right) d_{k}^{\prime}\left(v_{1}\right)+d_{k}\left(u_{2}\right) \sum_{j=0}^{i-1} d_{j}^{\prime}\left(v_{1}\right)+d_{k}^{\prime}\left(v_{1}\right) \sum_{j=0}^{k-1} d_{j}\left(u_{2}\right),
$$

implies $d_{k_{G_{1} \oplus G_{2}}}\left(u_{1}, v_{1}\right) \neq d_{k_{G_{1} \oplus G_{2}}}\left(u_{2}, v_{1}\right)$, since $d_{k}\left(u_{1}\right) \neq d_{k}\left(u_{2}\right)$. So $G_{1} \oplus G_{2}$ is not DDR, a contradiction. Hence G_{1} is DDR. Similarly we can prove G_{2} is also DDR. Hence, the proof.

Proposition 3.1: If the normal product $G_{1} \oplus G_{2}$ of two graphs is DDI then both G_{1} and G_{2} are DDI.

Proof. Let the normal product $G_{1} \oplus G_{2}$ of two graphs be DDI. Suppose G_{1} is not DDI, then there exist two vertices u_{1} and u_{2} such that $d d s\left(u_{1}\right)=d d s\left(u_{2}\right)$. Let v_{1} be any vertex in G_{2}. The number of vertices at distance $k, 0 \leq k \leq \max \left\{e\left(u_{1}\right), e\left(v_{1}\right)\right\}$ from $\left(u_{1}, v_{1}\right)$ is given by

$$
d_{k_{G_{1}+G_{2}}}\left(u_{1}, v_{1}\right)=d_{k}\left(u_{1}\right) d_{k}^{\prime}\left(v_{1}\right)+d_{k}\left(u_{1}\right) \sum_{j=0}^{k-1} d_{j}^{\prime}\left(v_{1}\right)+d_{k}^{\prime}\left(v_{1}\right) \sum_{j=0}^{k-1} d_{j}\left(u_{1}\right) .
$$

and the number of vertices at distance $k, 0 \leq k \leq \max \left\{e\left(u_{2}\right), e\left(v_{1}\right)\right\}$ from (u_{2}, v_{1}) is given by

$$
d_{k_{G_{1} \oplus G_{2}}}\left(u_{2}, v_{1}\right)=d_{k}\left(u_{2}\right) d_{k}^{\prime}\left(v_{1}\right)+d_{k}\left(u_{2}\right) \sum_{j=0}^{k-1} d_{j}^{\prime}\left(v_{1}\right)+d_{k}^{\prime}\left(v_{1}\right) \sum_{j=0}^{k-1} d_{j}\left(u_{2}\right)
$$

Hence, $\quad d_{k_{G_{1} \oplus G_{2}}}\left(u_{1}, v_{1}\right)=d_{k_{G_{1} \oplus G_{2}}}\left(u_{2}, v_{1}\right), 0 \leq k \leq \max \left\{e\left(u_{1}\right)=e\left(u_{2}\right)\right.$, $\left.e\left(v_{1}\right)\right\}$, implies $d d s\left(u_{1}, v_{1}\right)=d d s\left(u_{2}, v_{1}\right)$, a contradiction. Hence G_{1} is DDI. Similarly we can prove G_{2} is also DDI. Hence, the proof.

Remark 3 : Normal product of two DDI graphs need not be DDI. The graphs in Figure 1 are the two DDI graphs whose normal product is not DDI.

Lemma 3.2: Let G_{1} and G_{2} be two DDI graphs. Let $A=\left\{d d s\left(u_{i}\right) / u_{i} \in G_{1}\right\}$ and $B=\left\{d d s\left(v_{i}\right) / v_{i} \in V\left(G_{2}\right)\right\}$. If $|A \cap B| \geq 2$ then $G_{1} \oplus G_{2}$ is not DDI.

Proof. Let $|A \cap B| \geq 2$. Then there exist u_{k}, u_{l} in G_{1} and v_{m}, v_{n} in G_{2} such that $d d s\left(u_{k}\right)=d d s\left(v_{m}\right)$ and $d d s\left(u_{l}\right)=d d s\left(v_{n}\right)$. Hence in $G_{1} \oplus G_{2}$, $d d s\left(u_{k}, v_{n}\right)=d d s\left(u_{l}, v_{m}\right)$, making $G_{1} \oplus G_{2}$ non DDI. Hence the proof.

Proposition 3.2: Let G_{1} and G_{2} be any two graphs. Let u be any vertex in G_{1} and S be a subset of $V\left(G_{2}\right)$ such that no two vertices of S have same dds, then no two vertices of $\{u\} \times S$ have same dds in $G_{1} \oplus G_{2}$.

Proof. Suppose there exist two vertices (u, v) and (u, w) in $\{u\} \times S$ having same dds, i.e., $d d s(u, v)=d d s(u, w)$, this condition is satisfied only if $e(v)=e(w)$. Here three subcases arise, viz. Case(a): $e(u)<e(v)=e(w)$,
Case(b): $e(u)=e(v)=e(w)$ and Case(c): $e(u)>e(v)=e(w)$.
Case(a): $d d s(u, v)=d d s(u, w), e(u)<e(v)=e(w), e(u, v)=e(v)=e(w)$.

$$
\begin{align*}
& d_{m_{G_{1} \oplus G_{2}}}(u, v)=d_{m}(u) d_{m}^{\prime}(v)+d_{m}(u) \sum_{j=0}^{m-1} d_{j}^{\prime}(v)+d_{m}^{\prime}(v) \sum_{j=0}^{m-1} d_{j}(u) \text { and } \tag{1}\\
& d_{m_{G_{1} \oplus G_{2}}}(u, w)=d_{m}(u) d_{m}^{\prime}(w)+d_{m}(u) \sum_{j=0}^{m-1} d_{j}^{\prime}(w)+d_{m}^{\prime}(w) \sum_{j=0}^{m-1} d_{j}(u), \tag{2}
\end{align*}
$$

$d_{m G_{1} \oplus G_{2}}(u, v)=d_{m G_{1} \oplus G_{2}}(u, w)$, for all $m, 0 \leq m \leq e(v)=e(w)$.

First taking, $d_{m_{G_{1} \oplus G_{2}}}(u, v)=d_{m_{G_{1} \oplus G_{2}}}(u, w)$, for all $m, 0 \leq m \leq e(u)$, we get $d_{m}(u)\left[d_{m}^{\prime}(v)-d_{m}^{\prime}(w)\right]+d_{m}(u)\left[\sum_{j=0}^{m-1} d_{j}^{\prime}(v)-\sum_{j=0}^{m-1} d_{j}^{\prime}(w)\right]$ $+\left[\sum_{j=0}^{m-1} d_{j}(u)\left[d_{m}^{\prime}(v)-d_{m}^{\prime}(w)\right]\right]=0$
i.e., $\left[d_{m}(u)+\sum_{j=0}^{m-1} d_{j}(u)\right]\left[d_{m}^{\prime}(v)-d_{m}^{\prime}(w)\right]+d_{m}(u)\left[\sum_{j=0}^{m-1} d_{j}^{\prime}(v)-\sum_{j=0}^{m-1} d_{j}^{\prime}(w)\right]=0$
i.e., $\left[\sum_{j=0}^{m} d_{j}(u)\right]\left[d_{m}^{\prime}(v)-d_{m}^{\prime}(w)\right]+d_{m}(u)\left[\sum_{j=0}^{m-1} d_{j}^{\prime}(v)-\sum_{j=0}^{m-1} d_{j}^{\prime}(w)\right]=0$

Put $m=1$ in Eqn $(3) . \Longrightarrow\left[d_{0}(u)+d_{1}(u)\right]\left[d_{1}^{\prime}(v)-d_{1}^{\prime}(w)\right]$

$$
+d_{1}(u)\left[d_{0}^{\prime}(v)-d_{0}^{\prime}(w)\right]=0
$$

i.e., $d_{1}^{\prime}(v)=d_{1}^{\prime}(w)$

Put $m=2$ in Eqn. (3). $\Longrightarrow\left[\sum_{j=0}^{2} d_{j}(u)\right]\left[d_{2}^{\prime}(v)-d_{2}^{\prime}(w)\right]+d_{2}(u)$

$$
\left[\sum_{j=0}^{1} d_{j}^{\prime}(v)-\sum_{j=0}^{1} d_{j}^{\prime}(w)\right]=0
$$

i.e., $d_{2}^{\prime}(v)=d_{2}^{\prime}(w)$, And so on,

Put $m=e(u)$ in Eqn. (1). $\Longrightarrow\left[\sum_{j=0}^{e(u)} d_{j}(u)\right]\left[d_{e(u)}^{\prime}(v)-d_{e(u)}^{\prime}(w)\right]$

$$
+d_{e(u)}(u)\left[\sum_{j=0}^{e(u)-1} d_{j}^{\prime}(v)-\sum_{j=0}^{e(u)-1} d_{j}^{\prime}(w)\right]=0
$$

i.e., $d_{e}^{\prime}(u)(v)=d_{e}^{\prime}(u)(w)$.

Hence $d_{m}^{\prime}(v)=d_{m}^{\prime}(w)$ for all $m, 0 \leq m \leq e(u)$.
Now for all $m, e(u)<m \leq e(v)=e(u, w)$, we have

$$
d_{m G_{1} \oplus G_{2}}(u, v)=d_{m}^{\prime}(v) \sum_{j=0}^{e(u)} d_{j}(u) \text { and } d_{m G_{1} \oplus G_{2}}(u, w)=d_{m}^{\prime}(w) \sum_{j=0}^{e(u)} d_{j}(u) .
$$

Hence $d_{m_{G_{1} \oplus G_{2}}}(u, v)=d_{m G_{1} \oplus G_{2}}(u, w)$, for all $m, e(u)<m \leq e(v)$
$=e(u, w)$ gives $d_{m}^{\prime}(v) \sum_{j=0}^{e(u)} d_{j}(u)-d_{m}^{\prime}(w) \sum_{j=0}^{e(u)} d_{j}(u)=0$, i.e..
$\left[d_{m}^{\prime}(v)-d_{m}^{\prime}(w)\right] \sum_{j=0}^{e(u)} d_{j}(u)=0$ i.e., $d_{m}^{\prime}(v)-d_{m}^{\prime}(w)=0$.

$$
\begin{equation*}
\text { Hence } d_{m}^{\prime}(v)=d_{m}^{\prime}(w) \text {, for all } m, e(u)<m \leq e(v)=e(u, w) \tag{5}
\end{equation*}
$$

Combining (4) and (5), we get $d_{m}^{\prime}(v)=d_{m}^{\prime}(w)$, for all $m, 0 \leq m \leq e(v)=$ $e(w)=e(u, w)$, i.e., $\quad d d s(v)=d d s(w)$, a contradiction. Hence $d d s(u, v) \neq$ $d d s(u, w)$.

Case (b): $d d s(u, v)=d d s(u, w), e(u)=e(v)=e(w)=e(u, v)$.
Substituting these conditions in (1) and (2), we get

$$
\begin{equation*}
\left[\sum_{j=0}^{m} d_{j}(u)\right]\left[d_{m}^{\prime}(v)-d_{m}^{\prime}(w)\right]+d_{m}(u)\left[\sum_{j=0}^{m-1} d_{j}^{\prime}(v)-\sum_{j=0}^{m-1} d_{j}^{\prime}(w)\right]=0 \tag{6}
\end{equation*}
$$

Substituting values of m in Eq.(6) we get $d_{m}^{\prime}(v)=d_{m}^{\prime}(w)$ for all $m, 0 \leq m \leq$ $e(u)=e(v)=e(w)=e(u, v)$.
i.e., $d d s(v)=d d s(w)$, a contradiction. Hence $d d s(u, v) \neq d d s(u, w)$.

Case (c): $e(u)>e(v)=e(w), e(u, v)=e(u)$.
Substituting the values in (1) and (2) we get

$$
\begin{equation*}
\left[\sum_{j=0}^{m} d_{j}(u)\right]\left[d_{m}^{\prime}(v)-d_{m}^{\prime}(w)\right]+d_{m}(u)\left[\sum_{j=0}^{m-1} d_{j}^{\prime}(v)-\sum_{j=0}^{m-1} d_{j}^{\prime}(w)\right]=0 \tag{7}
\end{equation*}
$$

Substituting the values of m in (7) we get

$$
d_{m}^{\prime}(v)=d_{m}^{\prime}(w) \text { for all } m, 0 \leq m \leq e(v)=e(w)
$$

i.e., $d d s(v)=d d s(w)$, a contradiction. Hence, $d d s(u, v) \neq d d s(u, w)$.

Remark 4: Let S_{1} and S_{2} be two subsets of $V\left(G_{1}\right)$ such that every pair $(x, y), x \in S_{1}, y \in S_{2}$ satisfies dds $(x) \neq d d s(y)$ and let $z \in V\left(G_{2}\right)$ be any vertex in G_{2}, then in $G_{1} \oplus G_{2}$, the subsets $\left\{(x, z) / x \in S_{1}\right\}$ and $\left\{(y, z) / y \in S_{2}\right\}$ are such that every pair $((x, z),(y, z)), x \in S_{1}$ and $y \in S_{2}$ satisfies $d d s(x, z) \neq d d s(y, z)$.

4. Acknowledgement

The third author (SAUS) thanks the UGC, New Delhi for granting fellowship under Special Assistance Program CAS Phase-II.

References

[1] G. S. Bloom, L. V. Quintas and J. W. Kennedy, "Distance Degree Regular Graphs", The Theory and Applications of Graphs, 4th International conference, Western Michigan University, Kalamazoo, MI, May (1980), John Wiley and Sons, New York, 1981, pp. 95-108.
[2] G. S. Bloom, L. V. Quintas and J. W. Kennedy, "Some problems concerning distance and path degree sequences", Lecture Notes in Math. 1018, 1983, pp. 179-190.
[3] G. Brinkmann," Fast generation of Cubic graphs", J. Graph Theory, Vol. 23(2), 1996, pp. 139-149.
[4] F. Buckley and F. Harary, "Distance in Graphs", Addison Wesley 1990.
[5] F. C. Bussemaker, S. Cobeljic, D. B. Cvetkovic, J. J. Seidel, "Computer investigation of cube Graphs", T.H. Report 76-WSK-01, Technological University Eindhoven, Netherlands, 1976.
[6] T. Feder, "Stable Network and Product Graphs", Mem. Amer. Math. Soc., 116, pp. xii+223. 1995,
[7] R. L. Graham and P. M. Winkler, "On isomorphic embeddings of graphs", Trans. Amer. Math. Soc., Vol. 288, 1985, pp. 527-536.
[8] A. Graovac and T. Pisanski, "On the wiener index of a graph", J. Math. Chem, Vol. 8, 1991, pp. 53-62.
[9] F. Y. Halberstam and L. V. Quintas, "Distance and path degree sequences for cubic graphs", Mathematics Department, Pace University, New York, NY, 1982.
[10] W. Imrich, S. Klavžar, D. F. Rall, "Topics in Graph Theory: Graphs and Their Cartesian Product", A K Peters, Ltd, 2008.
[11] Jiri volf, " A small distance degree injective cubic graphs", Notes from New York Graph Theory Day XIII, New York Academy of Sciences, 1987, pp. 31-32.
[12] Medha Itagi Huilgol, H. B. Walikar, B. D. Acharya, " On diameter three distance degree regular graphs", Advances and Applications in Discrete Mathematics, Vol. 7(1), 2011, pp. 39-61.
[13] Medha Itagi Huilgol, Rajeshwari M. and Syed Asif Ulla S.,"Distance degree regular graphs and their eccentric digraphs", International J. of Math. Sci. and Engg. Appls.(IJMSEA), Vol. 5(VI), 2011, pp. 405-416
[14] P. Martinez and L. V. Quintas, "Distance degree injective regular graphs", Notes from New York Graph Theory Day VIII, New York Academy of Sciences, 1984, pp. 19-21.
[15] J. Nieminen, "The center problem in the product of graphs", Recent Studies in Graph Theory, 1989, pp. 201-205.
[16] D. Stevanović, "Distance regularity of compositions of graphs", Applied Mathematics Letters, Vol. 17(3), March 2004, pp. 337-343.

Received December, 2011

[^0]: *E-mail: medha@bub.ernet.in
 ${ }^{\dagger}$ E-mail: rajeshwarim@acharya.ac.in
 §E-mail: syedasif.ulla84@gmail.com

