# Seventh Semester B.E. Degree Examination, Dec.2018/Jan.2019 Control Engineering

Time: 3 hrs.

Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

### Module-1

a. Define control system. Compare open loop and close loop control system.

(08 Marks)

b. Explain the various requirements of an ideal control system.

(08 Marks)

#### OR

Find the system equation and analogous network using force voltage analog and force current analogy shown in Fig.Q.2. (16 Marks)

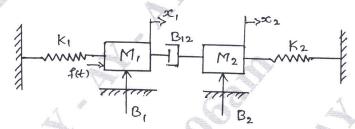
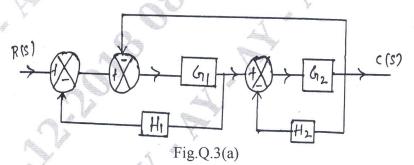
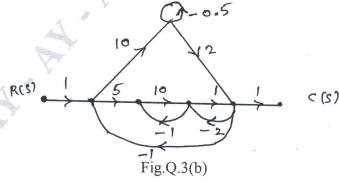




Fig.Q.2

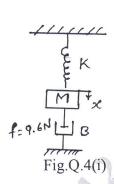
# Module-2

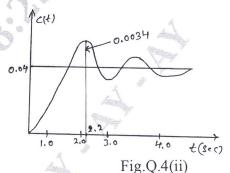

3 a. Reduce the block diagram shown in  $\overline{\text{Fig.Q.3(a)}}$  to its simplest possible.

(08 Marks)



b. Find out the overall gain using Mason's gain rule shown in Fig.Q.3(b).


(08 Marks)




1 of 2

### OR

For a spring mass damper system shown in the Fig.Q.4(i) a force of 9.6 Newtons is applied 4 to the mass. The response C(t) is as shown in Fig.Q.4(ii). Find the value of M, B and K.





## Module-3

Sketch the complete root locus of system having  $G(s)H(s) = \frac{K}{s(s+1)(s+2)(s+3)}$ . (16 Marks) 5

A unity feedback control system has  $G(s) = \frac{80}{s(s+2)(s+20)}$ Draw the bode plot. Determine 6 GM, PM, Wgc and Wpc. Comment on the stability. (16 Marks)

Module-4

Define frequency response. Derive the expressions for resonant peak M<sub>r</sub> and resonant 7 frequency  $W_r$  for a standard second order system in terms of  $\xi$  and  $W_r$ . (16 Marks)

OR

8  $\frac{(1+0.5s)}{(1+0.1s)(1+0.02s)}$ . Find GM and Sketch the Nyquist plot for the system with G(s)H(s) =comment on the stability. (16 Marks)

Module-5

- a. Explain the series and feedback compensation with block diagram. (08 Marks)
  - b. Explain the following: i) Lead compensator ii) Lag compensator.

(08 Marks)

- OR
- Write a note on Kalman and Gilberts test. (06 Marks)
  - Define the following terms:
    - i) State
    - State variables ii)
    - (iii State vector
    - iv) State space
    - V) State equation.

(10 Marks)