Sixth Semester B.E. Degree Examination, Dec.2018/Jan.2019 **Finite Element Analysis**

Time: 3 hrs.

Max. Marks:100

Note: Answer FIVE full questions, selecting at least TWO questions from each part.

PART - A

1 a. Determine the displacements of nodes of the spring system shown in Fig Q1(a).

Fig Q1(a)

(06 Marks)

b. Using Rayleigh – Ritz method, determine the expression for displacement in a fixed bar subjected to axial force 'P' as shown in Fig Q1(b). Assume 2nd order polynomial displacement function.

Fig Q1(b)

(08 Marks)

c. Explain simplex, complex and Multiplex elements in Finite Element Method.

(06 Marks)

- 2 a. Derive the shape function for a 2 noded bar element using Natural co-ordinate system. Also shown the variation of shape function. (08 Marks)
 - b. Explain convergence criteria and its requirements.

(06 Marks)

c. Explain Global, Natural and local co-ordinate system used in FEM.

(06 Marks)

3 a. An axial load $P = 200 \times 10^3 N$ is applied for the bar as shown in Fig Q 3(a). Determine the nodal displacements and stress in each material using Penalty approach method. (08 Marks)

 $E_1 = 70 \times 10^9 \text{ N/m}^2$ $E_2 = 200 \times 10^9 \text{ N/m}^2$

- b. Write the stiffness matrix for the following elements along with sketches of elements
 - i) Bar element
 - ii) Beam element
 - iii) Truss element.

(06 Marks)

- c. What are Boundary conditions and explain the following methods to take care of boundary conditions:
 - i) Elimination method
 - ii) Penalty method.

(06 Marks)

4 a. Derive the shape function for 8 noded rectangular elements. Using natural coordinates.

(10 Marks)

b. Evaluate the shape functions N₁, N₂ and N₃at the interior point 'P' for the triangular element shown in Fig Q4(b).

Fig Q4(b)

(06 Marks)

c. Explain CST and LST elements.

(04 Marks)

PART - B

5 a. Derive shape function for a 8 – noded hexahedral element.

(12 Marks)

b. What are Lagrangian and serendipity family of elements and explain.

(08 Marks)

6 a. Explain iso-parametric, sub parametric and super parametric elements with suitable sketch.
(10 Marks)

b. Explain pre-processing, processing and post processing used in FEM software. (10 Marks)

- 7 a. What are axisymmetric elements and explain axisymmetric triangular elements finite element modelling. (07 Marks)
 - b. Prove that area of axi-symmetric triangular element

 $A_e = \frac{1}{2} |d_{et}J|$

(07 Marks)

- c. Obtain the expression for stiffness matrix of an axisymmetric rectangular element. (06 Marks)
- 8 a. Derive the expression for stiffness matrix of 1 D Heat conduction.

(08 Marks)

b. Determine the temperature distribution in the rectangular fin shown in Fig Q8(b). Neglect convection heat transfer and assume heat generated inside the fin as 500 W/m³.

Fig Q8(b)

(12 Marks)