Sixth Semester B.E. Degree Examination, Dec.2018/Jan.2019 **Finite Element Method**

Time: 3 hrs.

Max. Marks: 80

Note: Answer any FIVE full questions, choosing one full question from each module.

Module-1

Explain plane stress and plane strain problem in FEM.

(06 Marks)

Using principle of minimum potential energy determine nodal displacements.

Fig Q1(a)

(10 Marks)

OR

Use Rayleigh- Ritz method to find stress and displacement at midpoint of a bar shown in Fig 2 Q2(a) below assuming 2^{nd} order polynomial. Take E = 70GPA, A = 100mm².

Fig Q2(a)

(10 Marks)

Explain simplex, complex and multiplex elements.

(06 Marks)

Module-2 a. Solve for stresses in members of structure given below:

Fig Q3(a)

(10 Marks)

Derive shape function for 2 noded Bar element in natural co-ordinate system.

(06 Marks)

OR

4 Determine Nodal displacement and element stresses for given truss.

Fig Q4

Take : E = 210GPa, $A = 600mm^2$

(16 Marks)

Module-3

- 5 a. Using Lagrangian functions obtain shape functions for nine node rectangular element.
 - b. Explain properties of shape function.

(10 Marks) (06 Marks)

OR

6 a. Derive shape function for constant strain triangular element.

(08 Marks)

b. With usual notations obtain shape function for tetrahedral element.

(08 Marks)

Module-4

7 a. Explain isoparametric, sub parametric and super parametric element.

(08 Marks)

b. Evaluate the following integral using two point Gauss integration method

$$I = \int_{-1}^{1} (a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4) dx$$
 (08 Marks)

OR

8 a. Explain preprocessing and post processing.

(08 Marks)

b. Determine the temperature distribution in a plane wall of thickness 60mm, which has an internal heat source of 0.3×10⁶ W/m³ and the thermal conductivity of material is 21W/m°C. Assume that surface temperature of the wall is 40°C use 1-D linear bar element and consider wall as axisymmetric system.

Module-5

Obtain temperature distribution in composite wall as shown in Fig Q9. Using 1-D elements

Fig Q9 2 of 3

(16 Marks)

OR

Find the natural frequencies of longitudinal vibration of the constrained stepped bar shown 10 in Fig Q10 and plot mode shapes.

Fig Q10

Take Young's modulus = E. density = P for given material.

(16 Marks)