

15AE46

Fourth Semester B.E. Degree Examination, June/July 2018 Turbomachines

Time: 3 hrs.

Max. Marks: 80

Note: Answer FIVE full questions, choosing one full question from each module.

Module-1

- a. Define turbomachine. Explain the detailed classification of turbomachines with examples for each type. (06 Marks)
 - b. Compare positive displacement machines with turbomachines in detail.

c. Show that the discharge of a centrifugal pump is given by, $Q = ND^3\phi \left\{ \frac{gH}{N^2D^2}, \frac{\mu}{ND^2\rho} \right\}$,

(04 Marks)

where N is the speed of the pump in rpm, D is the diameter of the impeller, g the acceleration due to gravity, H the manometric head, μ viscosity of fluid and ρ the density of the fluid. (06 Marks)

OR

- 2 a. A centrifugal pump running at 1500 rpm, with impeller diameter 200 mm, discharges 0.12 m³/s of water working against a head of 40 m with an efficiency of 90% (i) Calculate the specific speed (ii) the performance / power of a similar pump twice its size keeping the speed constant.
 - b. From the preliminary principles derive Euler's energy equation in the alternate form. And the different energy terms in it. (06 Marks)
 - c. For a given centrifugal pump with discharge angles (β₂) as 90°, less than 90°, more than 90°, draw the H-Q diagram with usual notations.

Module-2

- 3 a. Prove that for a compression process, the stage efficiency is greater than the overall isentropic efficiency.

 (06 Marks)
 - b. An air compressor has six stages of equal pressure ratio 1.4. The mass flow rate is 45 kg/s. The overall isentropic compression efficiency is 84% Entry pressure is 1 and $T_1 = 40$ °C. Calculate
 - (i) The state of the air at the exit.
 - (ii) Polytropic efficiency.
 - (iii) Stage efficiency.
 - (iv) Power required to drive the compressor, if the overall efficiency of the drive is 0.9

Assume $\gamma = 1.4$. R = 287 KJ/kgK, $C_P = 1.005$ KJ/kgK

(10 Marks)

OR

- 4 a. Derive the relation between isentropic efficiency and polytropic efficiency for an expansion process with usual notations.

 (06 Marks)
 - b. A two stage gas turbine develops 22 MW at the shaft. The inlet temperature is 1500 K. The pressure ratio of each stage is same, and the P₂/P₁ equal to 8. Take the isentropic expansion efficiency is 0.9. Calculate
 - (i) The pressure ratio of each stage, if it has 2-stages.
 - (ii) Polytropic efficiency.
 - (iii) The mass flow rate.
 - (iv) The efficiency and power of each stage, assume $\gamma = 1.4$, $C_P = 1.005$ KJ/kgK, overall drive efficiency = 0.90 (10 Marks)

Module-3

- With the help of a neat sketch, explain the working principle and components of a (06 Marks) centrifugal compressor.
 - Briefly explain the following for a centrifugal compressor, b.
 - Pressure co-efficient. (i) Power factor.
- Slip factor. (ii) (iv) / Surging

(10 Marks)

OR

With the help of diagrams and graphs describe the working of an axial flow compressors.

- For an axial flow compressor, draw velocity triangles at inlet and at exit for the following values of R (degree of reaction)
 - (i) R = 50%

(iii)

- (ii) R > 50%
- (iii) R < 50%

(08 Marks)

- c. Explain / Define the following:
 - Work done factor (ψ) (i)
 - Flow co-efficient (\$\phi\$) (ii)
 - (iii) Pressure co-efficient (ϕ_P)

(03 Marks)

Module-4

- How do you differentiate between an impulse and a reaction turbine? With neat sketches explain the working of an impulse and a reaction stage. (09 Marks)
 - b. What do you understand by velocity compounding and pressure compounding in a turbine?
 - Explain the following briefly,
 - Loading co-efficient (ψ) Vs Flow co-efficient (\$\phi\$) graph.

(03 Marks)

OR

- Draw Enthalpy-Entropy diagram for a radial turbine and explain the same
- (06 Marks)
- Describe the various stage losses occurring in a radial turbines.
- (06 Marks)
- Draw and explain Blade-to-gas speed ratio (σ) (Vs) Stage efficiency (η_s) graph for a radial (04 Marks) turbine.

Module-5

- With the help of a neat sketch, explain the parts and working principle of a centrifugal (06 Marks)
 - b. Briefly explain the following for a centrifugal pump:
 - Manometric head. (i)
 - Suction head and Delivery head. (ii)
 - Manometric efficiency (nmano). (iii)
 - (iv) Mechanical efficiency (n_{mech})
 - Hydraulic efficiency (η_H) (v)
 - Volumetric efficiency (η_{vol}) (vi)
 - Overall efficiency (no) (vii)

(10 Marks)

OR

a. Briefly discuss the classification of hydraulic turbines.

(04 Marks)

- Elaborate the working principle of the following with figures:
 - Pelton wheel. (i)
 - Kaplan turbine.

(09 Marks)

Briefly explain what is a draft tube, and what are it's functions.

(03 Marks)