CBCS Scheme

				_	Т	T	(A)	16/15CA E14
USN							(19)	16/17CAE14
UBIN							(O)=>	

First Semester M.Tech. Degree Examination, June/July 2018 Experimental Mechanics

Time: 3 hrs.

Max. Marks: 80

Note: Answer FIVE full questions, choosing one full question from each module.

Module-1

- 1 a. Explain in brief the following terms:
 - i) Calibration
 - ii) Distortion
 - iii) System response

iv) Characteristics of measurement under dynamic conditions.

(08 Marks)

b. A certain thermometer has a time constant of 15 sec and an initial temperature of 20°C. It is suddenly exposed to a temperature of 100°C. Determine the time to attain 90% of steady state value and the temperature at this time. If the frequency of the system is 0.01Hz. What is the time delay in the response of the thermometer? (08 Marks)

OR

- 2 (a. Explain briefly the following:
 - i) Types of errors
 - i) Statistical analysis of experimental data.

(08 Marks)

b. The following readings are taken of a certain physical length. Compute the mean reading standard deviation, variance and average of the absolute value of the deviation using the biased basis:

v	abib.									
	Reading	1	2	3	4	5	6	7	8 9	10
	x cm	5.30	5.73	6.77	5.26	4.33	5.45	6.09	5.64 5.81	5.75

(08 Marks)

Module-2

- 3 a. Explain the data acquisition system of a nuclear power plant as a program substitute for wired logic. (08 Marks)
 - b. What are the types of A/D converters? With a neat sketch explain successive approximation converter. (08 Marks)

OR

4 a. With a neat sketch, explain three-element rectangular rosette.

(08 Marks)

b. The following readings of strains were obtained on a rectangular strain Rosette mounted on aluminium for which E = 70GPa, $\mu = 0.32$, $\epsilon_a = 285 \times 10^{-6}$, $\epsilon_b = 65 \times 10^{-6}$, $\epsilon_c = 102 \times 10^{-6}$. Determine principal strains, principal strain directions, principal stresses and maximum shear stress.

Module-3

- 5 a. Explain calibration of photo elastic model material using a circular disc under diametral compression. (08 Marks)
 - b. Explain Tardy's method of compensation.

(08 Marks)

OR

6 a. Establish the stress optic relation for 2D photo elasticity.

(08 Marks)

b. What are isochromatics and isoclinics with a neat sketch, explain circular polariscope light field arrangements. (08 Marks)

Module-4

a. Explain stress freezing techniques for 3D-photoelasticity.

(08 Marks)

b. With a neat sketch, explain the phenomenon of scattered light photoelasticity by using polariscope. (08 Marks)

OR

8 a. Derive the equation for effective stresses at a point in a 3D model.

(08 Marks)

b. Explain the shear difference method with a neat sketch.

(08 Marks)

Module-5

9 a. What is photo elastic coating? List the advantages and applications of photo elastic coating.

(08 Marks)

b. Explain the following types of Brittle coatings:

i) Resin based coating (stress coat)

ii) Ceramic based coating (All Temp).

(08 Marks)

OR

Write a note on:

a. Hurter Driffield curve.

b. Holographic set up and reconstruction process of images in holography.

(16 Marks)