Second Semester M.Tech. Degree Examination, June/July 2018 RF and Microwave Circuit Design

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions.

- Explain the properties, reasons for using and applications of RF/microwaves. (08 Marks)
 - Define the following and explain their behavior at radio frequencies:
 - Wire (iii) Capacitor
 - (iii) Inductor. (06 Marks)
 - Use the absorption method to match the source $(100 + j126\Omega)$ to a load $(100011 j795.8\Omega)$ at 100 MHz as shown in Fig. Q1 (c). (06 Marks)

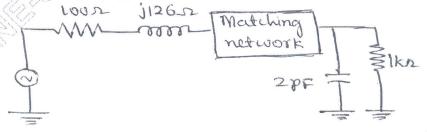


Fig. Q1 (c)

- Define and derive the expressions for the following:
 - (i) Reflection co-efficient.
 - (ii) Standing wave ratio.

- b. Consider a 50 Ω lossless transmission line of length l = 1 m, connected to a generator operating at f=1 GHz and having $V_g=10$ V with $Z_g=50$ Ω at one end and connected to a load $Z_L = 100 \Omega$ at the other. Determine
 - (i) The voltage and current at any point on the transmission line.
 - The voltage at the generator (V_i) and load (V_i) ends. (ii)
 - The reflection co-efficient and VSWR at any point on the line. (iii)
 - The average power delivered to the load.
 - (06 Marks)
- c. What are scattering parameters? Define and also explain formation of S-parameters for two port network. (06 Marks)
- A microwave signal at frequency of f = GHz is traveling on a transmission line having $Z_0 = 50 \Omega$ and terminated in a load of $Z_L = 20 \Omega$. Find the values of Z_{max} and Z_{min} and their location on the transmission line.
 - Given the circuit shown in Fig. Q3 (b) below, design a lumped matching network at 1 GHz that would transform $Z_{\rm L} = 10 + {\rm j}10 \ \Omega$ into a 50 Ω transmission line. (12 Marks)

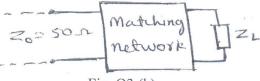


Fig. Q3 (b)

14ECS22

Explain the graphical solution of stability criteria. (08 Marks)

For a single stage microwave transistor amplifier define the following:

- Transducer power gain. (i)
- (ii) Operating power gain.

(iii) Available power gain. (06 Marks)

c. Define noise figure. Obtain the noise figure of a lossy network. Show that the noise figure (F) of a lossy network at room temperature equals to the attenuation factor (L).

(06 Marks)

- Explain the design of, 5
 - Maximum Gain Amplifier (MGA)
 - (ii) Low Noise Amplifier. (LNA)

(10 Marks)

Explain the design procedure for microwave transistor oscillator.

(10 Marks)

- Design and briefly explain the following conversion loss for SSB mixers:
 - (i) Diode loss
- (ii) Mismatch loss
- (iii) Hormonic loss

(10 Marks)

What are the two types of semiconductor phase shifters? Briefly explain any one type.

(10 Marks)

- Briefly explain MIC materials.
 - (10 Marks) Compare Hybrid microwave integrated circuits (HMICs) and microwave monolithic integrated circuits (MMICs). (10 Marks)

Write short notes on:

- Smith chart.
- One diode mixer.
- Detector losses.
- Chip mathematics.

(20 Marks)