CBCS Scheme

USN

16/17ECS24

Second Semester M.Tech. Degree Examination, June/July 2018 RF and Microwave Circuit Design

Time: 3 hrs.

Max. Marks: 80

Note: 1. Answer FIVE full questions, choosing ONE full question from each module.
2. Use of Smith chart is permitted.

Module-1

- a. Mention the reasons for using RF/microwaves and briefly discuss all RF/microwave applications. (10 Marks)
 - b. Analyze the LC matching N.W (show in Fig.Q1(b)) which transforms a source resistance $R_S = 100\Omega$ to a load of $R_L = 1000\Omega$. (06 Marks)

OR

- 2 a. Explain the different S-parameters of a two-port NW. Also mention the advantages of using the S-parameters. (10 Marks)
 - b. Find the [ABCD] matrix for a shunt element [y] as shown in Fig. Q2(b). (06 Marks)

Module-2

3 a. Derive the mathematical expression for the smith chart.

(08 Marks)

b. Find the input impedance of a transmission line $(Z_0 = 50\Omega)$ that has a length of $\frac{\lambda}{8}$ and is connected to a load impedance $Z_L = 50 + j50\Omega$. (08 Marks)

OR

4 a. Explain how smith chart can be used to plot the frequency response of RLC circuits.

(08 Marks)

b. A microwave signal at a frequency of $f = 1 \, \text{GHz}$, is travelling on a transmission line having $Z_0 = 50 \, \Omega$ and terminated in a load of $Z_L = 20 \, \Omega$. Find the values of Z_{max} and Z_{min} and their location on the transmission line. (08 Marks)

Module-3

- 5 a. Define stability of a system and describe the three criteria analytical method of stability analysis of RF circuits. (07 Marks)
 - b. Determine the stability of GaAs FET that has the following S-parameters at 2GHz in a 50Ω system graphically.

$$S_{11} = 0.89 - 60^{\circ}$$

$$S_{21} = 3.1 | 123^{\circ}$$

$$S_{12} = 0.02 | 62^{\circ}$$

$$S_{22} = 0.78 - 27^{\circ}$$
.

(09 Marks)

OR

- 6 a. For a transistor amplifier derive the expression for operating power gain (GP) and available power gain (GA) (06 Marks)
 - b. An antenna is connected to an amplifier Via a transmission line that has an attenuation of 3dB. The amplifier has the following specifications:

$$G_A = 20dB$$
, $B = 200$ MHz, $T_e = 145$ K.

Calculate the overall noise Fig.Q(b) and gain of the cascade at 300k.

(10 Marks)

Module-4

- 7 a. What are broad band amplifiers? Briefly describe the four design techniques of board band amplifiers. (10 Marks)
 - b. Define low noise amplifier. What are the steps involved in the design of LNA. (06 Marks)

OR

8 a. With a neat block diagram, explain the working and analysis of an one – diode mixer.

(08 Marks)

b. Consider a single – ended mixer having the following port VSWR values at 10 GHz (VSWR)_{RF} = 2.0 (VSWR)_{IF} = 3.0 J_h = 3 dB. The diode used in the mixer has : $R_1 = 100 \Omega$. $R_S = 2 \Omega$, $C_j = 0.2 pF$. What is the conversion loss of the mixer? (08 Marks)

Module-5

9 a. Define a phase shifter. What are the two methods of designing of digital phase shifter.

(08 Marks)

b. Write short note on PIN diode attenuator.

(08 Marks)

OR

- 10 a. What are the features and properties of an ideal substrate, dielectric, conductor or resistive material? (09 Marks)
 - b. Compare hybrid and monolithic MICS.

(07 Marks)