Fourth Semester B.E. Degree Examination, June/July 2017 Engineering Mathematics-IV

Time: 3 hrs.

Max. Marks: 80

Note: 1. Answer FIVE full questions, choosing one full question from each module.
2. Use of statistical tables are permitted.

Module-1

- 1 a. Find by Taylor's series method the value of y at x = 0.1 from $\frac{dy}{dx} = x^2y 1$, y(0) = 1 (upto 4th degree term).
 - b. The following table gives the solution of $5xy' + y^2 2 = 0$. Find the value of y at x = 4.5 using Milne's predictor and corrector formulae. (05 Marks)

 x
 4
 4.1
 4.2
 4.3
 4.4

 y
 1
 1.0049
 1.0097
 1.0143
 1.0187

c. Using Euler's modified method. Obtain a solution of the equation $\frac{dy}{dx} = x + \left| \sqrt{y} \right|$, with initial conditions y = 1 at x = 0, for the range $0 \le x \le 0.4$ in steps of 0.2. (06 Marks)

OR

- 2 a. Using modified Euler's method find y(20.2) and y(20.4) given that $\frac{dy}{dx} = \log_{10} \left(\frac{x}{y} \right)$ with y(20) = 5 taking h = 0.2. (05 Marks)
 - b. Given $\frac{dy}{dx} = x^2(1+y)$ and y(1) = 1, y(1.1) = 1.233, y(1.2) = 1.548, y(1.3) = 1.979. Evaluate y(1.4) by Adams-Bashforth method. (05 Marks)
 - c. Using Runge-Kutta method of fourth order, solve $\frac{dy}{dx} = \frac{y^2 x^2}{y^2 + x^2}$ with y(0) = 1 at x = 0.2 by taking h = 0.2 (06 Marks)

Module-2

3 a. Obtain the solution of the equation $2\frac{d^2y}{dx^2} = ux + \frac{dy}{dx}$ by computing the value of the dependent variable corresponding to the value 1.4 of the independent variable by applying Milne's method using the following data: (05 Marks)

X	1	1.1	1.2	1.3	
У	2	2.2156	2.4649	2.7514	
y'	2	2.3178	2.6725	3.0657	

- b. Express $f(x) = 3x^3 x^2 + 5x 2$ in terms of Legendre polynomials. (05 Marks)
- c. Obtain the series solution of Bessel's differential equation $x^2y'' + xy' + (x^2 + n^2)y = 0$ (06 Marks)

OR

- a. By Runge-Kutta method solve $\frac{d^2y}{dx^2} = x\left(\frac{dy}{dx}\right)^2 y^2$ for x = 0.2. Correct to four decimal places using the initial conditions y = 1 and y' = 0 at x = 0, h = 0.2. (05 Marks)
 - b. Prove that $J_{+\frac{1}{2}}(x) = \sqrt{\frac{2}{\pi x}} \sin x$ (05 Marks)
 - c. Prove the Rodrigues formula,

$$\rho_{n}(x) = \frac{1}{2^{n} n!} \frac{d^{n} (x^{2} - 1)^{n}}{dx^{n}}$$
 (06 Marks)

Module-3

- a. State and prove Cauchy's-Riemann equation in polar form. (05 Marks)
 - b. Discuss the transformation $W = e^z$. (05 Marks)
 - c. Evaluate $\int_{C} \left\{ \frac{\sin(\pi z^{2}) + \cos(\pi z^{2})}{(z-1)^{2}(z-2)} \right\} dz$

using Cauchy's residue theorem where 'C' is the circle |z| = 3(06 Marks)

- a. Find the analytic function whose real part is, $\frac{\sin 2x}{\cosh 2y \cos 2y}$. (05 Marks)
 - State and prove Cauchy's integral formula. (05 Marks)
 - Find the bilinear transformation which maps $z = \infty$, i, 0 into $\omega = -1$, -i, 1. Also find the fixed points of the transformation. (06 Marks)

Module-4

- Find the mean and standard deviation of Poisson distribution. (05 Marks)
 - In a test on 2000 electric bulbs, it was found that the life of a particular make was normally distributed with an average life of 2040 hours and S.D of 60 hours. Estimate the number of bulbs likely to burn for,
 - more than 2150 hours.
 - (ii) less than 1950 hours
 - (iii) more than 1920 hours and less than 2160 hours.

[A(1.833) = 0.4664, A(1.5) = 0.4332, A(2) = 0.4772](05 Marks)

The joint probability distribution of two random variables x and y is as follows:

x/y	-4	2	7		
1	1/8	1/4	1/8		
5	1/4	1/8	1/8		

Determine:

- Marginal distribution of x and y.
- (ii) Covariance of x and y
- (iii) Correlaiton of x and y. (06 Marks)

OR

- 8 a. The probability that a pen manufactured by a factory be defective is $\frac{1}{10}$. If 12 such pens are manufactured what is the probability that, (i) Exactly 2 are defective (ii) at least 2 are defective (iii) none of them are defective. (05 Marks)
 - b. Derive the expressions for mean and variance of binomial distribution. (05 Marks) c. A random variable X take the values -3, -2, -1, 0, 1, 2, 3 such that P(x = 0) = P(x < 0) and P(x = -3) = P(x = -2) = P(x = -1) = P(x = 1) = P(x = 2) = P(x = 3). Find the probability distribution. (06 Marks)

Module-5

- 9 a. In 324 throws of a six faced 'die' an odd number turned up 181 times. Is it reasonable to think that the 'die' is an unbiased one? (05 Marks)
 - b. Two horses A and B were tested according to the time (in seconds) to run a particular race with the following results:

0									
	Horse A:	28	30	32	33	33	29	34	
	Horse B:	29	30	30	24	27	29		

Test whether you can discriminate between the two horses.($t_{0.05}$ =2.2 and $t_{0.02}$ =2.72 for 11 d.f) (05 Marks)

c. Find the unique fixed probability vector for the regular stochastic matrix, $A = \begin{bmatrix} 0 & 1 & 0 \\ \frac{1}{6} & \frac{1}{2} & \frac{1}{3} \\ 0 & \frac{2}{3} & \frac{1}{3} \end{bmatrix}$ (06 Marks)

OR

- 10 a. Define the terms: (i) Null hypothesis (ii) Type–I and Type–II error (iii) Confidence limits. (05 Marks)
 - limits.

 b. Prove that the Markov chain whose t.p.m $P = \begin{bmatrix} 0 & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & 0 & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & 0 \end{bmatrix}$ is irreducible. Find the
 - corresponding stationary probability vector. (05 Marks)

 c. Three boys A, B, C are throwing ball to each other. A always throws the ball to B and B
 - always throws the ball to C. C is just as likely to throw the ball to B as to A. If C was the first person to throw the ball find the probabilities that after three throws (i) A has the ball.

 (ii) B has the ball. (iii) C has the ball.

 (06 Marks)

* * * * *