Seventh Semester B.E. Degree Examination, Dec.2018/Jan.2019 **Power Electronics**

Time: 3 hrs.

Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

a. Mention and explain the different types of power electronic converter systems. Draw their output/input characteristics. (08 Marks)

b. With neat waveforms and switching nodel, explain the switching characteristics of power MOSFET. (08 Marks)

OR

- 2 a. The bi-polar transistor in below figure 2(a) is specified to have β_F in the range of 8 to 40. The load resistance is $R_c = 11\Omega$. The dc supply voltage is $V_{cc} = 200V$ and the input voltage to the base circuit is $V_B = 10V$. If $V_{CE(sat)} = 1V$ and $V_{BE(sat)} = 1.5 V$, find
 - i) The value of R_B that results in saturation with an ODF of 5
 - ii) β_{forced} iii) Power loss P_T in transistor.

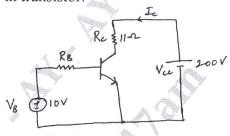


Fig Q2(a)

(08 Marks)

b. Explain di/dt and dv/dt limitation in power converters.

A BJT is operated as a chopper switch at a frequency of f_s = 10 KHz. The dc voltage of the chopper is V_s = 220 V and the load current is I_L = 100A. The switching times are t_d = 0, t_r = 3 μs and t_f = 1.2 μs .

Determine: i) The values of L_s, C_s and R_s for critically damped conditions.

- ii) Rs, if the discharge time is limited to $1/3^{\rm rd}$ of the switching period.
- iii) Rs, if the peak discharge current is limited to 10% of the load current
- iv) Power loss due to R-C snubber P_s neglecting the effect of inductor L_s on the voltage of snubber capacitor C_s . Also assume that $V_{CE(sat)} = \phi V$ (08 Marks)

Module-2

a. In detail explain the two transistor model of a thyristor.

(08 Marks)

b. Mention and explain different thyristor turn-on methods. Mention the advantages of gate triggering. (08 Marks)

OR

4 a. Explain dynamic turn – off characteristics of SCR.

For R – triggering circuit, the gate voltage required to trigger the SCR is $V_{GT} = 0.6V$ and corresponding $I_{GT} = 250\mu A$. The silicon diode is used and input voltage is $V = 100 \sin wt$. Find firing angle α if $R_1 = 10k\Omega$ and $R_2 = 220k\Omega$. (08 Marks)

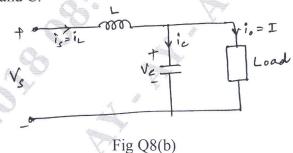
b. Explain uJT relaxation oscillator and design uJT firing circuit using an uJT having the parameters $\eta=0.72$, $I_P=60\mu A$, valley voltage $V_V=2.5$ V, $I_V=4mA$, $V_{BB}=15V$ and $R_{BB}=5k\Omega$. The leakage current with emitter open is 3mA. The triggering frequency is 1kHz and $V_{g(min)}=0.3V$. Also calculate the minimum and maximum values of triggering frequency. Assume $C=0.05\mu F$.

2. Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8=50, will be treated as malpractice Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

Module-3

- 5 a. With the help of neat circuit diagram describe the operation of a single phase full converter with R.L load. Draw the associated waveforms. Derive expressions for rms and average output voltages. (08 Marks)
 - b. A single phase half wave converter is operated from 120V, 60Hz supply. If the load is resistive with $R = 10\Omega$, and the delay angle is $\alpha = 60^{\circ}$, calculate efficiency, FF, TUF. Also derive the equations for rms and average output voltages. (08 Marks)

OR


- 6 a. With neat circuit diagram and waveforms, explain the principle of phase angle control in AC voltage controller. Derive the equations for rms and average output voltages. (08 Marks)
 - b. A single phase half wave ac voltage controller has an input voltage of 150V and a load resistance of 8Ω . The firing angle of thyristor is 60° in each positive half cycle. Find:
 - i) Average output voltage ii) RMS output voltage iii) Power output
 - iv) Power factor (pf) v) Average input current over one cycle. (08 Marks)

Module-4

- 7 a. Classify the choppers and explain the different types and chopper circuits. (08 Marks)
 - b. Obtain an expression for the output voltage for a step-up chopper. A dc chopper has an input voltage of 200V and a load of 8Ω resistance. The voltage drop across thyristor is 2V and the chopper frequency is 800Hz. The duty cycle $\alpha = 0.4$. Find
 - i) Average output voltage ii) rms output voltage iii) Chopper efficiency. (08 Marks)

OR

- 8 a. In detail explain buck regulator. (08 Marks)
 - b. The buck regulator shown in figure Q8 (b) has an input voltage of $V_s = 12V$. The required average output voltage is $V_a = 5V$ at $R = 500\Omega$ and peak to peak output ripple voltage is 20mV. The switching frequency is 25kHZ. The peak to peak ripple current of inductor is limited to 0.8A, determine :
 - i) The duty cycle, K ii) The filter inductance, L iii) The filter capacitor, C
 - iv) The critical values of L and C.

(08 Marks)

Module-5

- 9 a. What do you mean by inverters? Explain the operation of single phase full bride inverter.

 Draw the load current waveforms for R, RL and RLC loads. (08 Marks)
 - b. Mention the applications of current source inverters. Explain any one type of single phase current source inverter. (08 Marks)

OR

10 a. Explain solid state relays.

b. Explain microelectronic relays.

(08 Marks)

(08 Marks)

* * * * *