## CRCS Schame AT11 ## First Semester B.E. Degree Examination, Dec.2017/Jan.2018 **Engineering Mathematics – I** Time: 3 hrs. Max. Marks: 80 Note: Answer FIVE full questions, choosing one full question from each module. Find the $n^{th}$ derivative of $y = e^{-x} \sin x \cos 2x$ . (06 Marks) Show that the curves $r = a(1 + \cos \theta)$ and $r = b(1 - \cos \theta)$ cut each other orthogonally. (05 Marks) Find the radius of curvature of the curve $x^2y = a(x^2 + y^2)$ at the point (-2a, 2a). (05 Marks) If $y = \sin(m \sin^{-1} x)$ , then prove that $(1 - x^2)y_{n+2} - (2n+1)xy_{n+1} + (n^2 - m^2)y_n = 0$ (06 Marks) b. Find the pedal equation of $r = 2(1 + \cos \theta)$ . (05 Marks) c. Find the radius of curvature of $r^n = a^n \sin n\theta$ . (05 Marks) Module-2 Expand $\tan^{-1} x$ in powers of (x-1) upto the fourth degree term. (06 Marks) b. Evaluate $\lim_{x\to 0} \left| \frac{1}{x} - \frac{\log(1+x)}{x^2} \right|$ (05 Marks) c. If z = f(x + ct) + g(x - ct), prove that $\frac{\partial^2 z}{\partial t^2} = C^2 \cdot \frac{\partial^2 z}{\partial x^2}$ (05 Marks) OR a. Obtain the Maclaurin's series expansion of $e^{\sin x}$ upto the form containing $x^4$ . (06 Marks) b. If $z = log \left( \frac{x^4 + y^4}{x + y} \right)$ , show that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = 3$ . (05 Marks) c. If $u = x^2 + y^2 + z^2$ , v = xy + yz + zx, w = x + y + z, show that $\frac{\partial(u, v, w)}{\partial(x, y, z)} = 0$ . (05 Marks) Module-3 A particle moves along the curve whose parametric equations are $x = t^3$ $(x = t^2)$ and z = 2t + 5. Find the components of its velocity and acceleration at time t = 1 in the direction of i+j+3k. (06 Marks) b. If $\phi = 2x^3y^2z^4$ , find Div(Grad $\phi$ ). (05 Marks) c. Show that $\vec{F} = (y+z)i + (z+x)j + (x+y)k$ is irrotational. Also find a scalar function $\phi$ , such that $\vec{F} = \nabla \phi$ . (05 Marks) OR - 6 a. Find the directional derivative of $\phi = x^2yz + 4xz^2$ at P(1, -2, -1) in the direction of (06 Marks) - b. If $\overrightarrow{F} = (x+y+1)i+j-(x+y)k$ . Show that $\overrightarrow{F}$ .curl $\overrightarrow{F} = 0$ . (05 Marks) - c. If $\vec{F} = \nabla(xy^3z^2)$ , find div $\vec{F}$ and curl $\vec{F}$ at the point (1, -1, 1). (05 Marks) Module-4 - 7 a. Obtain the reduction formula for $\int \cos^n x dx$ . (06 Marks) - b. Solve $ye^{xy}dx + (xe^{xy} + 2y)dy = 0$ . (05 Marks) - c. Find the orthogonal trajectories of the family of curves $y^2 = Cx^3$ . (05 Marks) OR - 8 a. Evaluate $\int_{0}^{1} x^{\frac{3}{2}} (1-x)^{\frac{3}{2}} dx$ . (06 Marks) - b. Solve $\frac{dy}{dx} \frac{2}{x}y = \frac{y^2}{x^3}$ . (05 Marks) - c. A body is heated to 110°C and placed in air at 10°C. After one hour its temperature becomes 60°C. How much additional time is required for it to cool to 30°C? (05 Marks) Module-5 - 9 a. Find the rank of the matrix $A = \begin{bmatrix} 4 & 0 & 2 & 1 \\ 2 & 1 & 3 & 4 \\ 2 & 3 & 4 & 7 \\ 2 & 3 & 1 & 4 \end{bmatrix}$ (06 Marks) - b. Solve the following system of equations by Gauss Jordan method: x+2y+z=3, 2x+3y+3z=10, 3x-y+2z=13 (05 Marks) - c. Reduce the matrix $A = \begin{bmatrix} -1 & 3 \\ -2 & 4 \end{bmatrix}$ to the diagonal form. (05 Marks) OR - 10 a. Solve the following system of equations by Gauss-Seidal method: 20x + y 2z = 17, 3x + 20y z = -18, 2x 3y + 20z = 25. Perform three iterations. - b. Show that the transformation, $y_1 = 2x_1 2x_2 x_3$ , $y_2 = -4x_1 + 5x_2 + 3x_3$ , $y_3 = x_1 x_2 x_3$ is regular and find the inverse transformation. (05 Marks) - c. Reduce the quadratic form, $3x^2 + 3y^2 + 3z^2 + 2xy - 2yz + 2zx$ into the canonical form. (05 Marks) \* \* \* \* \*