ACHARYA INSTITUTE OF TECHNOLOGY Bangalore - 560090

GRGS Scheme

USN

15MAT11

First Semester B.E. Degree Examination, Dec.2016/Jan.2017 **Engineering Mathematics - I**

Time: 3 hrs.

Max. Marks: 80

Note: Answer FIVE full questions, choosing one full question from each module.

Module-1

(06 Marks)

 $r = \frac{a}{1 + \cos \theta}$ and $r = \frac{b}{1 - \cos \theta}$.

(05 Marks)

c. Find the radius of curvature of the curve $x^4 + y^4 = 2$ at the point (1, 1).

(05 Marks)

OR a. If x = tan(log y), find the value of $(1+x^2)y_{n+1} + (2nx-1)y_n + (n)(n-1)y_{n-1}$.

(06 Marks)

b. Find the Pedal equation of $\frac{2a}{r} = 1 + \cos \theta$.

(05 Marks)

c. Find the radius of curvature of the curve $r^n = a^n \cos n\theta$.

(05 Marks)

a. Explain $\log(\cos x)$ about the point $x = \frac{\pi}{3}$ upto 3rd degree terms using Taylor's series.

(06 Marks)

b. Evaluate $\underset{x\to 0}{\text{Limit}} \left(\frac{\tan x}{x} \right)^{\frac{1}{x^2}}$.

(05 Marks)

c. State Euler's theorem and use it to find $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial v}$ when $u = tan^{-1} \left(\frac{x^2 + y^2}{x + y} \right)$.

4 a. Expand $\frac{e^x}{1+e^x}$ using Maclaurin's series upto and including 3^{rd} degree terms.

(06 Marks)

b. Find $\frac{du}{dt}$ when $u = x^3y^2 + x^2y^3$ with $x = at^2$, y = 2at. Use Partial derivatives.

(05 Marks)

c. If $u = \frac{x_2 x_3}{x_1}$, $v = \frac{x_1 x_3}{x_2}$, $w = \frac{x_1 x_2}{x_3}$, find the value of Jacobian $J\left(\frac{u, v, w}{x_1, x_2, x_3}\right)$.

a. A particle moves on the curve $x = 2t^2$, $y = t^2 - 4t$, z = 3t - 5, where t is the time find the components of velocity and acceleration at time t = 1 in the direction of i - 3j + 2k.

(06 Marks)

b. Find the divergence and curl of the vector $\vec{V} = (xyz)i + (3x^2y)j + (xz^2 - y^2z)K$ at the point (2, -1, 1).

c. A vector field is given by $\vec{A} = (x^2 + xy^2) i + (y^2 + x^2y)j$, show that the field is irrotational and find the scalar potential.

Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

2. Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8 = 50, will be treated as malpractice.

15MAT11

- a. Find grad ϕ when $\phi = 3x^2y y^3z^2$ at the point (1, -2, -1). b. Find a for which f = (x + 3y)i + (y 2z)j + (x + az)k is solenoidal. (06 Marks)
 - (05 Marks) (05 Marks)
 - c. Prove that Div(curl \vec{V}) = 0.

Module-4

- a. Obtain the reduction formula of $\int \sin^m x \cos^n x dx$. (06 Marks)
 - Evaluate $\int_{x}^{2a} x \sqrt{2ax x^2} dx$. (05 Marks)
 - Solve $(2x \log x xy) dy + 2y dx = 0$. (05 Marks)

OR

- a. Obtain the reduction formula of $\int \cos^n x \ dx$. (06 Marks)
 - b. Obtain the Orthogonal trajectory of the family of curves $r^n \cos n \theta = a^n$. Hence solve it.
 - c. A body originally at 80°C cools down at 60°C in 20 minutes, the temperature of the air being 40°C. What will be the temperature of the body after 40 minutes from the original?(05 Marks)

Module-5

a. Find the rank of the matrix

$$A = \begin{bmatrix} 2 & 3 & -1 & -1 \\ 1 & -1 & -2 & -4 \\ 3 & 1 & 3 & -2 \\ 6 & 3 & 0 & -7 \end{bmatrix}.$$
 (06 Marks)

b. Solve by Gauss – Jordan method the system of linear equations

2x + y + z = 10, 3x + 2y + 3z = 18, x + 4y + 9z = 16. (05 Marks)

c. Find the largest eigen value and the corresponding Eigen vector by power method given that

$$A = \begin{bmatrix} 2 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 2 \end{bmatrix}.$$
 (Use $\begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^T$ as the initial vector). (Apply 4 iterations). (05 Marks)

10 a. Use Gauss – Seidel method to solve the equations

(06 Marks)

$$20x + y - 2x = 17$$

 $3x + 20y - z = 18$

2x - 3y + 20z = 25. Carry out 2 iterations with $x_0 = y_0 = z_0 = 0$.

- b. Reduce the matrix $A = \begin{bmatrix} -1 & 2 & -2 \\ 1 & 2 & 1 \\ -1 & -1 & 0 \end{bmatrix}$ to the diagonal form. (05 Marks)
- c. Reduce the quadratic form $3x^2 + 5y^2 + 3z^2 2yz + 2zx 2xy$ to the canonical form. (05 Marks)