

15MAT11 USN

First Semester B.E. Degree Examination, June/July 2016 **Engineering Mathematics - I**

Time: 3 hrs.

Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

Find the nth derivative of $y = e^{-3x} \cos^3 x$. (06 Marks)

Find the angle of intersection between the curves $r = a(1 + \sin \theta)$ and $r = a(1 - \cos \theta)$. (05 Marks)

Find the radius of curvature at the point $\left(\frac{3a}{2}, \frac{3a}{2}\right)$ on the curve $x^3 + y^3 = 3axy$. (05 Marks)

OR
If $y = \sin(\log(x^2 + 2x + 1))$, prove that $(x + 1)^2 y_{n+2} + (2n + 1)(x + 1)y_{n+1} + (n^2 + 4)y_n = 0$. (06 Marks)

Find the pedal equation for the curve $r^m \cos m\theta = a^m$ (05 Marks)

c. Find the radius of curvature of the curve $x^4 + y^4 = 2$ at the point (1, 1). (05 Marks)

upto 4th degree terms using Taylor's series. Expand sin x in powers of x -(05 Marks)

(05 Marks)

c. If $u = \tan^{-1} \left(\frac{x^2 + y^2}{x + y} \right)$ prove that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = \frac{1}{2} \sin 2u$. (06 Marks)

OR
Expand log(1 + e^x) using Maclaurin's series upto 3rd degree terms. (06 Marks)

If $u = f\left(\frac{x}{y}, \frac{y}{z}, \frac{z}{x}\right)$ then prove that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} + z \frac{\partial u}{\partial z} = 0$. (05 Marks)

If $x = r \sin \theta \cos \phi$, $y = r \sin \theta \sin \phi$, $z = r \cos \theta$, find $J\left(\frac{x, y, z}{r \theta \phi}\right)$. (05 Marks)

A particle moves along the curve $x = 2t^2$, $y = t^2 - 4t$, z = 3t - 5, where t is the time, find the 5 component of its velocity and acceleration in the direction of the vector i - 3j + 2k at t = 1.

Show that $\overrightarrow{F} = (6xy + z^3)i + (3x^2 - z)j + (3xz^2 - y)k$ is irrotational, find ϕ such that $F = \nabla \phi$. (05 Marks)

Prove that div(curl u) = 0. (05 Marks)

6 a. If
$$\overrightarrow{r} = x_i + y_j + z_k$$
, then prove that : i) $\nabla \times \overrightarrow{r} = 0$ ii) $\nabla^2 r^n = n(n+1)r^{n-2}$. (06 Marks)

(05 Marks)

b. Prove with usual notations Curl (grad ϕ) = 0

c. Find div
$$\overrightarrow{f}$$
 and curl \overrightarrow{f} of $\overrightarrow{f} = \operatorname{grad}(x^3 + y^3 + z^3 - 3xyz)$. (05 Marks)

Module-4

7 a. Obtain the reduction formula of $\int \sin^m x \cos^n x \, dx$.

(06 Marks)

b. Solve $(x^2 + y^3 + 6x) dx + y^2x dy = 0$.

(05 Marks)

c. Find the orthogonal trajectory of $r^n = a^n \cos n\theta$, where a is the parameter.

(05 Marks)

OR

8 a. Obtain the reduction formula of $\int \cos^n x \, dx$ and hence evaluate: $\int \cos^n x \, dx$. (06 Marks)

b. Solve $\frac{dy}{dx} = xy^3 - xy$. (05 Marks)

c. If the temperature of the air is 30°C and the substance cools from 100°C to 70°C in 15 minutes, find when the temperature reaches at 40°C. (Use Newton's law of cooling).

(05 Marks)

Module-5

9 a. Find the rank of the matrix

$$A = \begin{bmatrix} 2 & 3 & -1 & -1 \\ 1 & -1 & -2 & -4 \\ 3 & 1 & 3 & -2 \\ 6 & 3 & 0 & -7 \end{bmatrix}.$$
Eight the largest size

(06 Marks)

b. Find the largest eigen value and the corresponding eigen vector of the matrix $A = \begin{bmatrix} 2 & 0 & 1 \\ 0 & 2 & 0 \text{ by power method, use } [1, 0 & 0]^T \text{. as initial vector, take five iterations.} \end{bmatrix}$

(05 Marks)

c. Reduce the matrix
$$A = \begin{bmatrix} -19 & 7 \\ -42 & 16 \end{bmatrix}$$
 to the diagonal form. (05 Marks)

OR

10 a. Use Gauss – Siedel iteration method upto 3 iterations to solve with (0, 0, 0) as initial values

$$10x + y + z = 12$$

 $x + 10y + z = 12$

$$x + y + 10z = 12.$$

(06 Marks)

b. Show that the transformation:

$$y_1 = 2x_1 + x_2 + x_3$$

$$y_2 = x_1 + x_2 + 2x_3$$

$$y_3 = x_1 - 2x_3$$

is regular. Write down the inverse transformation.

(05 Marks)

c. Reduce the quadratic form $3x^2 + 5y^2 + 3z^2 - 2yz + 2zx - 2xy$ to the canonical form.

(05 Marks)