First Semester B.E. Degree Examination, June/July 2016 **Engineering Mathematics – I**

Time: 3 hrs.

Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing at least two from each part.

2. Answer all objective type questions only on OMR sheet page 5 of the answer booklet.

3. Answer to objective type questions on sheets other than OMR will not be valued.

PART - A

Choose the correct answers for the following:

If $y = e^{-x^2}$, then $y_{n+1} + 2xy_n + 2ny_{n-1}$ is equal to

Geometrical meaning of LMVT is that tangent parallel to ii)

A) chord

B) x - axis

C) y - axis

Taylors series about the origin is iii)

A) $y(0) + xy_1(0) + \frac{x^2}{2!}y_2(0) + --$ B) $y(0) - xy(0) + \frac{x^2}{2}y_2(0) - -$

C) $xy_1(0) + \frac{x^2}{2!}y_2(0) + --$ iv) Maclaurin's expansion of cos hx is

A) $x - \frac{x^3}{3!} + \frac{x^5}{5!} -$ B) $x + \frac{x^3}{3!} + \frac{x^5}{5!} + -$ C) $1 + \frac{x^2}{2!} + \frac{x^4}{4!} + -$ D) $1 - \frac{x^2}{2!} + \frac{x^4}{4!} - -$

b. If $y = y = e^{a \sin^{-1} x}$, $PT(1-x^2) Y_{n+2} - (2n+1) xy_{n+1} - (n^2 + a^2)y_n = 0$.

- State: i) Rolles theorem ii) Lagrange's mean value theorem iii) Cauchy's mean value
- Using the Maclaurin's series expansion, expand tan x up to the term containing x⁵. (06 Marks) d.
- 2 Choose the correct answers for the following: a.

(04 Marks)

Value of $\lim_{x\to 0} \frac{a^x - b^x}{x}$ is equal to

B) log(B/A)

C) log(ab)

D) 1

Length of the perpendicular 'p' from the origin to the tangent

A) $r \cos \phi$

B) r tan ϕ

C) $r \sin \phi$

D) r cot o

Angle between the radius vector and the tangent is

A) $\tan \phi = \frac{1}{r} \frac{d\theta}{dr}$

B) $\cot \phi = r \frac{dr}{d\theta}$ C) $\cot \phi = \frac{1}{r} \frac{d\theta}{dr}$ D) $\tan \phi = r \frac{d\theta}{dr}$

Radius of curvature of a circle is

A) zero

B) constant

C) $\pi/2$

D) ∞ .

b. Evaluate $\lim_{x\to 0} \left[2 - \frac{x}{a}\right]^{\tan(\frac{\pi x}{2a})}$.

(04 Marks)

Find the angle of intersection of curves $r = a(1 + \cos \theta)$ and $r^2 = a^2 \cos 2\theta$.

(06 Marks)

d. Prove that for the curve x = f(x) is $\rho = \frac{\left[1 + y_1^2\right]^{\frac{3}{2}}}{y_2}$.

(06 Marks)

3	a.	Choose the correct answers for the following: i) If $u = x^y$, then u_{xy} is equal to	(04 Marks)
		A) x^{y-1} (1 + y log x) B) x^{y-1} y log x C) y^{y-1} (y + log x) D) zero	1.
		ii) If $A = f_{xx}(a, b)$; $B = f_{xy}(a, b)$; $C = f_{yy}(a, b)$. Then $f(x, y)$ will have a $f(x, y)$ $f(x, y)$ will have a $f(x, y)$	maximum at (a, b)
		iii) If $x = r \cos \theta$, $y = r \sin \theta$, then $\frac{\partial(x, y)}{\partial(r, \theta)}$ is equal to	0
		A) 1 B) r iv) $\delta x = x - x_0 $ is referred to as A) absolute error in x B) error in x	D) 0
		C) relative error in x D) approximate error in x.	
	b.	If $u = e^{ax - by} \sin(ax + by)$; show that $b \frac{\partial u}{\partial x} - a \frac{\partial u}{\partial y} = 2abu$.	(04 Marks)
	c.	If $u \frac{yz}{x}$, $v = \frac{zx}{y}$, $w = \frac{xy}{z}$; show that $\frac{\partial (uvw)}{\partial (xyz)} = 4$.	(06 Marks)
	d.	Examine the function $xy(a - x - y)$ for extreme values.	(06 Marks)
4	a.	Choose the correct answers for the following:	(04 Marks)
		i) A vector field F is said to irrotational, if A) $\overrightarrow{F} = 0$ B) $Curl \overrightarrow{F} = 0$ C) $Grad \phi = F$	D) none
		ii) Given $\phi = x^2y + y^2z + z^2x$, then $\nabla^2 \phi$ is equal to	D) none
		A) $x + y + z$ B) $2(x + y + z)$ C) $(x^2 + y^2 + z^2)$ D) $2(x - y + z)$	
		iii) A vector field F is said to be solenoidal, if	
5		A) $\nabla \phi = F$ B) div \overrightarrow{F} C) Curl \overrightarrow{F} iv) $\nabla \times (\nabla \phi)$ is equal to	D) none
	b. c.	A) $\nabla^2 \phi$ B) $\nabla \phi$ C) $\stackrel{\longrightarrow}{0}$ If A and B are irrotational PT A × B is solenoidal. Show that $\nabla^2 r^n = n(n+1) r^{n-2}$.	D) 0. (04 Marks) (06 Marks)
	d.	Prove that div curl $F = 0$.	(06 Marks)

Choose the correct answers for the following : 5

(04 Marks)

Value of $\int_{-\pi/2}^{\pi/2} \cos^8 x \, dx$ is equal to

- C) $\frac{35}{128}\pi$

If f(x,y) = f(-x, -y) then the curve is symmetrical about ii)

- B) line y = x

If $f(r, \theta) = f(r, \pi - \theta)$ then the curve is symmetrical about iii)

- A) line $\theta = \frac{\pi}{4}$ B) $\theta = \frac{\pi}{2}$
- C) $\theta = 0$

Parametric equation for $x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}$ (Astroid) is

- A) $x = a \cos^3 \theta$, $y = a \sin^3 \theta$ C) $x = \cos^3 \theta$, $y = \sin^3 \theta$
- B) $x = a \cos^2 \theta$, $y = a \sin^2 \theta$

b. Given: $\int_0^{\pi} \frac{dx}{a + b \cos x} = \frac{\pi}{\sqrt{a^2 + b^2}} (a > b); \text{ evaluate } \int_0^{\pi} \frac{dx}{(a + b \cos \theta)^2}.$ (04 Marks)

Obtain the reduction formula for $\int_{-\infty}^{\pi/2} \sin^n \theta \ d\theta$

(06 Marks)

Find the area of the cardiod $r = a(1 - \cos \theta)$

(06 Marks)

Choose the correct answers for the following:

Substitution that transformations the equation : $\frac{dy}{dx} = \frac{x+y+1}{2x+2y+3}$ to homogeneous

- C) x/y = t

Integrating factor for the D.E. $\frac{dy}{dx} + Py = Q$, where P and Q are function x only

- C) ∫ P dy

iii) Necessary and sufficient condition for the DE M(x, y) dx + N(x, y) dy = 0 to be an

- A) $\frac{\partial M}{\partial v} = \frac{\partial N}{\partial x}$ B) $\frac{\partial M}{\partial v} + \frac{\partial N}{\partial v} = 0$ C) $\frac{\partial N}{\partial v} = \frac{\partial M}{\partial x}$
- D) none

The family of straight lines passing through the origin is represented by the differential

- A) y dx + x dy = 0 B) x dx + y dy = 0 C) x dy y dx = 0

- D) none.

b. Solve $\left(1 + e^{x/y}\right) dx + e^{x/y} \left(1 - \frac{x}{y}\right) dy = 0$.

(04 Marks)

(06 Marks)

c. Solve $(1 + y^2)dx = (\tan^{-1}y - x) dy$. d. ST the family of parabolas $y^2 = 4a(x + a)$ is self orthogonal.

(06 Marks)

Choose the correct answers for the following:

(04 Marks)

Rank of $\begin{bmatrix} 2 & 3 & 5 & 1 \\ 1 & 3 & 4 & 5 \end{bmatrix}$ is i)

B) 1

C) -3

A set of 'm' linear equations, with n unknowns posses infinite solution if ii)

A) $\rho(A) = \rho[A : B] = r = n$

B) $\rho(A) = \rho[A : B] = r < n$

C) $\rho(A) \neq \rho[A : B]$

D) $\rho(A) = \rho[A : B] = r > n$

For a system of linear homogeneous equation if $\rho(A) = \rho[A : B] = n$, where n is the iii) number of un known system was

A) trivial solution

B) non trivial solution C) both A and B

D) no solution

For non homogeneous system of linear equations, Gauss lamination method is applicable, of the coefficient matrix is reduced to

A) Symmetric matrix

B) lower triangular matrix

C) diagonal matrix

D) upper triangular matrix.

Using the elementary transformation reduce the matrix A to Echelon form $A = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 4 & 2 \\ 2 & 6 & 5 \end{bmatrix}$.

(04 Marks)

Find the rank of the matrix A. (04 Investigate the values of λ and μ so that the equations : x+y+z=6, x+2y+3z=10, $x + 2y + \lambda z = \mu$, have i) no solution ii) unique solution iii) infinite number of solutions.

Solve the system of equations by Gauss Jordon method: x + y + z = 9, x - 2y + 3z = 82x + y - z = 3.

Choose the correct answers for the following: 8

(04 Marks)

Linear transformation Y = AX is regular, if

A) A is singular B) A is square

C) A is non singular D) none

Sum of eigen values of a square matrix is equal to ii)

A) Sum of the principle diagonal elements

B) product of principle diagonal elements

C) determine of value of that matrix

D) none

iii) The matrix B of same order as A is said to be similar if these exist D such that A) $A = P^{-1}BP$ B) $B = P^{-1}AP$ C) $A^{n} = PD^{n}P^{-1}$ D) $B = P^{-1}DP$

Matrix 'D' which diagonalises 'A' is

A) Spectral matrix of A C) null matrix

B) Orthogonal matrix of A D) modal matrix of A.

Show that the transformation, $y_1 = 2x_1 x_2 + x_3$, $y_2 = x_1 + x_2 + 2x_3$, $y_3 = x_1 - 2x_3$, is Regular and write down the inverse transformation. (04 Marks)

c. Reduce the matrix $A = \begin{bmatrix} -1 & 2 & -2 \\ 1 & 2 & 1 \\ -1 & -1 & 0 \end{bmatrix}$ to the diagonal form.

(06 Marks)

d. Find the rank, index, signature of the following quadratic form:

 $2x^2 - 2y^2 + 2y^2 - 2xy - 8yz + 6zx$.

(06 Marks)