USN

Third Semester MCA Degree Examination, Dec.2018/Jan.2019 Computer Graphics

Time: 3 hrs.

Max. Marks: 100

		Note: Answer any FIVE full questions.
1	a.	Explain with necessary GLUT functions how display window management is done.
		(10 Marks)
	b.	Explain the following OpenGL functions:
		i) glClear (GL COLOR BUFFER BIT)
		ii) $glColor3f(1.0, 0.0, 0.0)$
		iii) gluOrtho2D (xw _{min} , xw _{max} , yw _{min} , yw _{max})
		iv) glFlush()
		v) glClearColor (red, green, blue, alpha). (10 Marks)
2	a.	Write Bresenham's line drawing algorithm and plot a line using Bresenham's algorithm
		between the endpoints (20, 10) and (25, 14). (10 Marks)
	b.	Write a program to implement midpoint circle generation algorithm. (10 Marks)

- 3 a. Explain OpenGL polygon fill-area functions with eaxample. (10 Marks)
 - b. Explain 3D translation, scaling, rotation and reflection transformations. (10 Marks)
- 4 a. Explain the following:
 - i) General 2D pivot point rotation.
 - ii) General 2D fixed point scaling. (10 Marks)
 - b. What is composite transformation? Show that the composition of two rotations is additive and two scaling is multiplizative by concatenating the matrix representations for $R(\theta_1)$, $R(\theta_2)$ and (sx_1, sy_1) , (sx_2, sy_2) . (10 Marks)
- 5 a. Explain offline transformations. (04 Marks)
 - b. Explain transformation between coordinate system in 3D. (06 Marks)
- c. Write a program to create and fill the object by using boundary fill algorithm. (10 Marks)
- 6 a. Explain normalization and viewport transformation in 2D viewing. (10 Marks)
 - b. Explain Nicholl-Lee-Nicholl line clipping algorithm with equations. (10 Marks)
- 7 a. Describe Sutherland Hodgeman polygon clipping algorithm with an example. (10 Marks)
 - b. Explain the following:
 - i) Orthogonal projections
 - ii) Perspective projections. (10 Marks)
- **8** Write short notes on:
 - a. Design of animation sequence
 - b. Traditional animation technique
 - c. Bezier spline curve
 - d. 3D viewing coordinate parameter.

(20 Marks)