

13MCA13

First Semester MCA Degree Examination, June/July 2018 Fundamentals of Computer Organization

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions.

1	a.	Perform the following number conversion i) $(225.225)_{10} = ()_2$ ii) $(225.225)_{10} = ()_8$ iii) $(6 BD)_{16} = ()_8$ iv) $(1032.2)_4 = ()_{10}$ v) $(1111011.001)_2 = ()_{10}$	(10 Marks)
	b.		(06 Marks)
	C.	State and prove Demorgen's laws.	(04 Marks)
2	a.	Prove the following using Boolean theorems. i) $(x + x'y')(x' + y') + yz = y' + z$ ii) $w'y'z' + wz + y'z + xyz = w'y' + wz + xz$	(06 Marks)
	b.	Simplify using K-map	
		i) $f(A, B, C, D) = \sum m(5, 6, 7, 12, 13) + d(4, 9, 14, 15)$	63/120
		ii) $f(A, B, C, D) = A'B'D + ABC'D' + A'BD + ABCD'$	(10 Marks)
	c.	Explain full adder and give its logic diagram using 2 ex - or gates.	(04 Marks)
3	0	Explain D-flip flop with logic diagram and truth table.	(06 Marks)
3	a. b.	What is a register? Explain shift register with neat diagram.	(07 Marks)
		What is a ripple counter? Explain BCD ripple counter.	(07 Marks)
	C.	What is a ripple counter. Explain BeB ripple counter.	
4	a.	Discuss basic operational concepts of system with a neat diagram	(10 Marks)
	b.	What is a bus? Discuss single bus structure.	(06 Marks)
	C.	Give the application of mainframe and super computer.	(04 Marks)
_		To the USC of the single with a with a warming (1)	(10 Marks)
5	a.	Explain different addressing modes with examples.	
	b.	Write a program in assembly language to add two variables using one address in	(04 Marks)
		Explain branching with example.	(06 Marks)
	C.	Explain branching with example.	
6	a.	What is bus arbitration? Explain 2 types of bus arbitration.	(10 Marks)
	b.	Explain DMA controllers in a computer system with neat diagram.	(10 Marks)
			(00.1/- 1-)
7	a.	Explain read and write operation in 1K × 1 memory chip.	(08 Marks)
	b.	Explain internal organization of asynchronous and synchronous DRAM.	(12 Marks)
8		Write short notes on	
	a.		
	b.		
	C.		(20 Marks)
	d.	SRAM cell	(20 11111113)

* * * * *