2. Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8=50, will be treated as malpractice. Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

Third Semester B.E. Degree Examination, Dec.2018/Jan.2019 **Analog and Digital Electronics**

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- Explain construction and working principle of operations of n-channel D-MOSFET along 1 with its drain and trans-conductance characteristics. (10 Marks)
 - Write the difference between JEFT's and MOSFET's.

(05 Marks)

c. For a given self-bias configuration in Fig.Q.1(c), determine: i) I_{d_a} and $V_{g'eq}$ ii) V_{ds} and V_{D} .

- List of differences between ideal and practical op-amp amplifier. (06 Marks)
 - With a neat diagram and waveform explain astable multivibrator using 555 timers. (07 Marks)
 - With neat diagram and waveform explain the working of relaxation oscillation. (07 Marks)

Module-2

- 3 Explain positive and negative logic. List the equivalence between them. (08 Marks)
 - Find the minimal SOP form for the given min-terns using K-map.

 $F(A, B, C, D) = \sum m(4, 5, 6) + d(10, 12, 13, 14, 15).$

(06 Marks)

c. Find the minimal POS form for the given MAX-TERM using K-map. $f(a, b, c, d) = \pi M (5, 7, 8, 9, 12) + d(0, 6, 10, 15).$

(06 Marks)

Using Quine-Mc-Clusky method simplify the following Boolean equation.

 $f(a, b, c, d) = \sum m(0, 1, 10, 11, 13, 15) + d(2, 3, 12, 14).$

(10 Marks) (06 Marks)

Define Hazard. Explain different types of Hazards. Write the VHDL code for the circuit shown in Fig.Q.4(c):

(04 Marks)

		Madula 2	
5	a. b.	Module-3 What is multiplexers? Design 8:1 multiplexer using 2:1 multiplexers. (08 Mar Explain the purpose of using parity generators and checkers using suitable illustrations. (06 Mar	
	c.	What is magnitude comparator? Explain 1 bit magnitude comparator. (06 Man	rks)
		OR	
6	a. b.	Design 7-segment decoder using PLA. With neat logic diagram and truth table, explain negative edge triggered J-K flip-flop. (06 Ma)	rks)
	C.	What is an Adder? Explain with truth table the half Adder, full Adder, half subtractor full subtractor. (08 Ma)	and rks)
7	a.	Module-4 With a neat logic diagram and truth table explain the working of J-K master slave flip-	flop
,	b.	using NAND gates. Give characteristic table, characteristic equation and excitation table for S-R, D and	J-K
	C.	flip-flop. Write a VHDL code for D-flip-flop. (08 Ma	
		OR	
8	a.	What is a register? With neat diagram explain 4-bit parallel-in-serial out shift register. (08 Ma	arke)
	b.	Explain with a neat diagram how a shift register can be applied for serial-addition.	
	c.	(06 M)	
	0.		
9	a.	Module-5 Define counter. Design a synchronous counter for the sequence,	
		$0 \rightarrow 3 \rightarrow 1 \rightarrow 2 \rightarrow 6 \rightarrow 7 \rightarrow 0 \rightarrow 3$ using J-K flip flop. (12 M	
	b.	Explain with neat diagram the working principle of Digital Clock. (08 M	ai Ks
		OR Explain the binary ladder with digital input of 1000. (06 M	[arks]
10) a. b.	Explain 2-bit simultaneous A/D converter. (08 M	larks
	c	- 1 · · · · · · · · · · · · · · · · · ·	larks
		* * * * *	
		2 of 2	
		All Title Co.	