Seventh Semester B.E. Degree Examination, Dec.2018/Jan.2019 **Digital Image Processing**

Time: 3 hrs.

Max. Marks: 80

Note: Answer any FIVE full questions, choosing one full question from each module.

Module-1

1 a. Explain the fundamental steps involved in digital image processing.

(10 Marks)

b. Define digital image processing and list out the applications of digital image processing.

(06 Marks)

OR

2 a. With a neat block diagram, explain the components of an Image Processing System.

b. Briefly describe human visual system with a neat diagram.

(08 Marks) (08 Marks)

Module-2

3 a. Distinguish between linear versus Non-linear operations with an example, for each.

Define 4-adjacency, 8-adjacency and m-adjacency between pixels.

(10 Marks) (06 Marks)

OF

a. Explain the concept of sampling and quantization in image processing.

(08 Marks)

b. With an example, explain image interpolation.

(08 Marks)

Module-3

5 a. Define 2-D orthogonal and unitary transforms.

(08 Marks)

b. Obtain Haar transform for N = 4.

(08 Marks)

OR

6 a. Write the generation of N×N Hadamard Transform. Mention its properties and advantages.

(10 Marks)

b. An image u and information matrix A are given below. Obtain the transformed image

$$\mathbf{u} = \begin{bmatrix} 6 & 3 \\ 12 & 1 \end{bmatrix} \quad \mathbf{A} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

(06 Marks)

Module-4

7 a. Suppose that a 8-bit image of size 64×64 pixel has intensity distribution as given in the table below. Find the histogram equalization using linear stretching (08 Marks)

r_k	n_k
0	790
1	1023
2	850
3	656
4	329
5	245
6	122
7	81

1 of 2

b. With a neat block diagram, explain homomorphic filtering approach for image enhancement.
(08 Marks)

OR

- 8 a. Explain the smoothening of images in frequency domain using (i) ideal law pass filter (ii) Butterworth law pass filter. (10 Marks)
 - b. Write a note on:
 - (i) Contrast stretching
 - (ii) Gray level Slicing.

(06 Marks)

Module-5

- 9 a. Describe the different noise models with their probability density function. (08 Marks)
 - b. Derive an expression for linear degradation model in presence of additive noise. (08 Marks)

OR

- 10 a. Draw the block diagram of gray level to color transformation and explain. (08 Marks)
 - b. Develop a procedure for converting
 - (i) RGB to HSI
 - (ii) HSI to RGB.

(08 Marks)

* * * * *