15MT35

Third Semester B.E. Degree Examination, June/July 2018 Analog and Digital Electronics

Time: 3 hrs.

Max. Marks: 80

Note: Answer any FIVE full questions, choosing one full question from each module.

Module-1

- a. With a neat circuit diagram analyze the working of a half wave rectifier with C filter and also derive the expression for the ripple factor. (07 Marks)
 - b. For the full wave 2 diode rectifier circuit with $V_i = 10 \text{ V(rms)}$, $R_s = 0.2 \Omega$, $R_L = 10 \Omega$, $V_D = 0.7V$ find (i) Peak load current (ii) DC load current (iii) Individual diode dc current (iv) DC output voltage. (04 Marks)
 - c. Design a DC restorer circuit to get the following output waveform with the given input. [Refer Fig.Q1(c)]. (05 Marks)

OR

- 2 a. Define the following terms: (i) Reverse Recovery Time (ii) Transition capacitance (iii) Large Signal model. (09 Marks)
 - Analyze the working of a zener diode as a voltage regulator and also derive the expression for load voltage.

Module-2

- 3 a. Analyze the working of a first order low pass Butterworth filter with a neat sketch and frequency response. Also show that $\frac{V_o}{V_{in}} = \frac{AF}{1+j(f/fH)}$. (10 Marks)
 - b. Design a RC phase shift oscillator for $f_0 = 200$ Hz.

(06 Marks)

OR

- 4 a. Design a wide band pass filter with $f_L = 200$ Hz and $f_H = 1$ kHz and a pass band gain = 4. Also plot the frequency response and calculate the value of Quality factor. (08 Marks)
 - b. Analyze the working of a Wien Bridge Oscillator with neat sketch and necessary equations.

 (08 Marks)

Module-3

- 5 a. With a neat circuit and relevant waveforms analyze inverting comparator as Schmitt trigger. And also design a Schmitt trigger circuit with $V_{ut} = +3V$ and $V_{lt} = -3V$. With supply voltage of $\pm 15V$. If supply voltage is 10V(P-P). Find hysteresis voltage. (10 Marks)
 - b. Design a divide by 2 network using a monostable multivibrator for input trigger signal of 2 kHz and $c = 0.1 \mu\text{F}$. (06 Marks)

OR

6 a. Discuss the working of a Astable multivibrator circuit with neat block and waveforms.

(10 Marks)

b. With a neat circuit and waveforms analyze the working of a non-inverting comparator circuit. (06 Marks)

Module-4

7 a. Explain the advantages of CMOS logic and design NAND gate and NOR gate using CMOS logic. (08 Marks)

b. Construct a 3-bit ripple down counter using T flip-flop. Write timing diagram and state diagram. Also mention the drawback of ripple counter. (08 Marks)

OR

8 a. Explain the working of a TTL logic family with neat sketch.

(08 Marks)

b. Design a modulo - 10 ripple up counter. Also write its state diagram.

(08 Marks)

Module-5

9 a. Implement the following Boolean function using 4:1 MUX $f(a, b, c) = \Sigma m(1, 3, 5, 6)$

(06 Marks) (10 Marks)

b. Explain the working principle of successive approximation type ADC.

OR

10 a. Define decoder construct a circuit for 2 to 4 line decoder. Also implement 3 to 8 line decoder using 2 to 4 line decoder. (10 Marks)

b. Explain the operation of R-2R ladder type DAC.

(06 Marks)