CBCS Scheme

USN	15MT35

Third Semester B.E. Degree Examination, Dec.2017/Jan.2018 Analog and Digital Electronics

Time: 3 hrs.

Max. Marks: 80

Note: Answer any FIVE full questions, choosing one full question from each module.

Module-1

- a. With a neat circuit diagram analyze the operation of full wave rectifier with C filter and also evaluate the expression for ripple factor for full wave rectifier with 'C' filter. (08 Marks)
 - b. A zener diode regulator has the following circuit parameters $V_1 = 10$ V, $V_Z = 5$ V, $R_Z = 100 \Omega$, $R_D = 500 \Omega$ Evaluate:
 - i) Output resistance
 - ii) Percentage change in V_L for 25% change in V_L
 - iii) Power dissipation in regulator circuit
 - iv) Voltage regulation assuming $R_L = 0.5 \text{ K}\Omega$.

(08 Marks)

OR

- 2 a. Explain the following terms with respect to PN junction model:
 - i) DC restorer circuit
 - ii) Reverse recovery time
 - iii) Transition capacitance

(09 Marks)

b. Create a double ended clipper model to clip at two independent levels 3V and 2V from 10V(p-p) input voltage. Also draw the transfer characteristics. (07 Marks)

Module-2

- 3 a. Evaluate the expression for gain of a first order Butterworth low pass filter. Plot the frequency response. Also mention the design steps. (10 Marks)
 - b. Evaluate the low cutoff frequency for the second order high pass Butterworth filter. Given $C_2 = C_3 = 0.0047 \mu F$, $R_2 = R_3 = 33 \text{ K}\Omega$ and also draw the circuit diagram. (06 Marks)

OR

- 4 a. With a neat circuit analyze the working of RC phase shift oscillator. Using OPAMP design a RC phase shift oscillator to have $F_0 = 2 \text{ kHz}$. (10 Marks)
 - b. Design a first order low pass filter of cut off frequency 1 kHz with a pass band gain of 2 and using frequency sealing technique convert 1 kHz cut off frequency to 1.6 kHz. (06 Marks)

Module-3

- 5 a. Understand and analyze the working of a astable multivibrator with a neat circuit and necessary waveforms. (10 Marks)
 - b. Analyze monostable multivibrator as a divide by 2 network for the frequency of input trigger signal 2 kHz. If the value of $c = 0.01 \mu F$. What should be the value of R_A ? (06 Marks)

OR

- 6 a. Analyze the working of a Schmitt trigger circuit and also design a Schmitt trigger circuit with UTP = +5V, LTP = -5V with $\pm V_{sat} = \pm 15V$. Draw its input, output and hysteresis curve. (10 Marks)
 - b. Understand and explain the working of zero crossing detector with relevant circuit and necessary waveforms. (06 Marks)

Module-4

- Design a CMOS NOR gate and also mention the advantages of CMOS logic. (06 Marks) Realize a EX-OR gate using NAND and NOR gates only. (06 Marks) (04 Marks)
 - Realize AND gate using diode.

OR

Create a MOD 9 upcounter. 8

(08 Marks)

With a near circuit diagram describe the operation of a JK Flip Flop. Write truth table, timing diagram and also mention the drawback of it. (08 Marks)

Module-5

Implement the following Boolean function using the depth understanding of MUX.

 $f(x, y, z) = \varepsilon m(1, 2, 4, 6, 7)$

(06 Marks)

Analyze the working of successive approximation type ADC with neat sketch. Also obtain the 4 bit binary representation of analog signal 10-7 V using successive approximation technique. Full scale voltage = ± 16 V. (10 Marks)

OR

Discuss the operation of weighted resistor 4 bit DAC with necessary circuit and equations. 10

(06 Marks)

Analyze the working of 2 \times 4 decoder circuit and also design a 3 \times 8 decoder using 2 \times 4 decoder. (10 Marks)