CBCS Scheme

	11		(39)	
USN			15ME44	
		Fourth Semester B.E. Degree Examination, Dec.2017/Jan.20	18	
		Fluid Mechanics		
Tim			Iarks: 80	
	N	ote: Answer any FIVE full questions, choosing one full question from each mo	dule.	
		Module-1		
1	a.	Define the following properties of fluid with their units:		
		i) Mass density (ii) Dynamic viscosity iii) Surface tension	(06 Marks)	
	b.	Determine the specific gravity of a fluid having a kinematic viscosity of the 0.0	4 stoke and	
		dynamic viscosity of 0.05 poise.	(04 Marks)	
	c.	An oil film of thickness 115mm is used for used for lubricating between a squ	are plate of	
		size 0.8m × 0.8m and an inclined plane having an exclinition of 30° with the hor	izontal. The	
		weight of the square plate is 300N and slides down the plane with a uniform	velocity of	
		0.3m/s. Find the dynamic viscosity of oil.	(06 Marks)	
2	a.	Define: i) Bouyancy ii) Meta centre.		
2	b.		(02 Marks)	
	υ.	Derive an expression for total pressure force and depth of centre of pressure for surface submerged in water.		
	c.	A solid cylinder of diameter 4m has a height of 3m. Find the meta centre heigh	(08 Marks)	
	•	floating in water with its axis vertical. The Specific gravity of cylinder is 0.6.		
		The specific gravity of cylinder is 0.0.	(06 Marks)	
		Module 2		
3	a.	Explain the two different fluid flow analysis method with suitable example.	(06 Marks)	
	b.	The velocity potential for 0 is given by $0 = -\frac{xy^3}{3} - x^2 + x^3y + y^2$		
		J (
		Calculate the velocity components in the X and Y direction. Check the possibility	y of such a	
		flow.	(10 Marks)	
		OR		
4	a.	Derive Euler's equation of motion for a steady flow and deduce Bernoullis equation	on.	
			(10 Marks)	
	b.	A horizontal venturimeter with inlet dia. 20cm and throat diameter 10cms is used	to measure	
		the flow of water. The pressure at inlet is 17.658 N/cm ² and Vaccum pressure at	the throat is	
		30cms of mercury. Find the discharge of water through venture meter C _d = 0.9.	(06 Marks)	
		Module-3		
5	a.	Define Reynolds number. What is its significance? List the characteristic of lamir	var flovy	
			(08 Marks)	
	b.	A crude oil of viscosity 0.97 per sec and specific gravity 0.9 is flowing through	horizontal	
		circular pipe of diameter of 0.1m and length 10m. Calculate the difference of pres	sure at two	
	1	ends of the pipe if 100kg is collected in a tank in 0.5 minutes. Assume laminar flo	w.S.	
			(08 Marks)	
		OR	Samuel Marie	
6	a.	Derive the Darcy Weisbach equation.	(08 Marks)	
	b.	A 10cm diameter pipe takes off abruptly from a large tank and run 5m, then	expands to	
		- •	1	

(08 Marks)

coefficients 0.0065.

20cm diameter abruptly and runs 50m and next discharge directly to open air with a velocity of 25m/s. Calculate the height of water surface above point of discharge. Take Darcy's

Module-4

- 7 a. Define:
 - i) Displacement thickness
 - ii) Momentum thickness
 - iii) Energy thickness

iv) Shape factor as with respect to boundary layer.

(08 Marks)

b. A man descends the ground from an airoplane with help of a parachute, which is hemispherical having a diameter of 5m against the resist of air with a uniform velocity of 25m/s. Find the weight of the man if the weight of parachute is 9.81, CD = 0.6. (08 Marks)

OR

8 a. Explain the different types of similitude.

(08 Marks)

b. Assume the viscous force F exerted by a fluid on sphere of diameter D, depends on viscosity μ of mass density ρ and velocity of motion of the sphere, obtain the expression for shear force F, using Buckingham's π – theorem method. (08 Marks)

Module-5

- 9 a. Define: i) Mach line ii) Mach angle iii) Subsonic and supersonic flow. (08 Marks)
 - b. Calculate the velocity and Mach number of a supersonic aircraft flying at an altitude of 1200m when temperature is 300K. Sound of aircraft is heard 2 seconds after passage of aircraft over the head of an observer. Take r = 1.41, R = 287 J/kg/k. (08 Marks)

OR

- 10 a. Write short essay on the engineering application of CFD, brining the advantages and the limitations. (08 Marks)
 - b. Define the following terms and write the relevant equations for the same :
 - i) Stagnation Temperature
 - ii) Stagnation Pressure.

(08 Marks)