CBCS Scheme

15MT63 USN

Sixth Semester B.E. Degree Examination, June/July 2018 **Power Electronics**

Time: 3 hrs.

Max. Marks: 80

Note: Answer any FIVE full questions, choosing one full question from each module.

Module-1

- Define power electronics. List the applications of power electronics. (08 Marks)
 - With necessary waveforms, explain the switching characteristics of power MOSFET.

(08 Marks)

Write the symbol and control characteristics of the following devices:

i) IGBT ii) SCR iii) GTO. Compare MOSFET and IGBT.

(06 Marks)

(06 Marks)

What are the different types of power electronic converters?

(04 Marks)

Module-2

Explain the two transistor model of SCR and derive the expression

 $I_A = \frac{\alpha_2 I_G + I_{CBO_1} + I_{CBO_2}}{1 - (\alpha_1 + \alpha_2)}$

(08 Marks)

A thyristor circuit is shown in Fig.Q.3(b), the SCR has a latching current of 50mA, and is fired by a pulse of length 50 usec. Show that without resistance R, the thyristor will fail to remain 0_N , when the firing pulse ends. And then find the maximum value of R to ensure firing. (08 Marks)

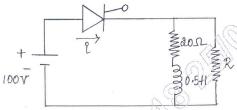


Fig.Q.3(b)

OR

- Define commutation. Compare natural and forced commutation.
 - b. In the parallel capacitor turn off-circuit shown in Fig.Q.4(b), main SCR T₁ is to be reversed biased for atleast 40µs for proper commutation and holding current of auxiliary SCR T₂ is 2mA. Find R and C.

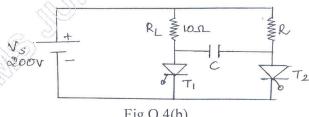
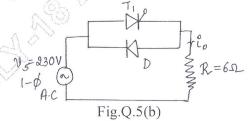


Fig.Q.4(b)

1 of 2


Module-3

5 a. With neat circuit diagram and waveforms, explain operation of single phase AC voltage controller using ON-OFF control. Derive an expression for RMS value of output voltage.

(08 Marks)

- b. A single phase half wave AC voltage controller is shown in Fig.Q.5(b) feeds power to a resistive load of 6Ω from 230V, 50Hz source. The firing angle of SCR is $\alpha = \pi/2$. Calculate:
 - i) RMS value of output voltage.
 - ii) Input power factor.
 - iii) Average input current.
 - iv) Average output voltage.

(08 Marks)

OR

- 6 a. Explain the operation of single phase semi converter with circuit and waveforms. Derive an expression for average value of output voltage (Assume R-L load). (08 Marks)
 - b. What are the advantages of circulating current-mode dual converter?
- (04 Marks)

c. Mention the applications of AC voltage controller.

(04 Marks)

Module-4

7 a. Explain the principle of operation of a step-up chopper.

(08 Marks)

- b. A D.C. chopper has an input voltage of 200V and a load resistance of 8Ω. The voltage drop across the thyristor is 2V and chopper frequency is 800Hz. The duty cycle is 0.4 Find:
 - i) Average output voltage
 - ii) RMS output voltage
 - iii) Chopper efficiency.

(08 Marks)

OR

- 8 a. Derive an expression for peak-peak ripple in the load current, in case of a step down chopper with R-L load. (10 Marks)
 - b. With neat diagram, explain four quadrant operation of a chopper.

(06 Marks)

Module-5

- 9 a. Explain the principle of single phase half bridge inverter with relevant circuit diagram and waveforms. (10 Marks)
 - b. Write a note on performance parameters of a inverter:
 - i) Harmonic factor of nth harmonic.
 - ii) Total harmonic distortion (THD).
 - iii) Distortion factor (DF)

(06 Marks)

OR

10 a. Compare voltage source inverter and current source inverter.

(06 Marks)

b. With neat circuit diagram, explain the operation of a three phase transistorized inverter in 180° conduction mode with star connected R-load. (10 Marks)

* * * * *