Sixth Semester B.E. Degree Examination, June/July 2018 Microelectronics

Time: 3 hrs.

Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- a. Derive the expression for drain to source current for triode and saturation regions of n-MOSFET. (10 Marks)
 - b. Design the circuit shown in Fig.Q1(b) to obtain a drain voltage of 0.1V. Find the value of R_D . At the operating point, let $V_t = 0.5V$ and $K'_D \left(\frac{W}{V} \right) = 2mA/V^2$. (06 Marks)

OR

- 2 a. Derive the expression for drain current under channel length modulation (08 Marks)
 - b. What is body effect? Write the expressions for V_t related to body effect and draw its small signal model. (04 Marks)
 - c. Design the circuit in Fig.Q2(c) to obtain $I_D=80~\mu A$, find the value required for R and find the DC voltage V_D . Let the NMOS transistor have $V_t=0.6V$, $\mu_n cox=200~\mu A/V^2$, $L=0.8\mu m$ and $W=4~\mu m$. Neglect channel length modulation. (04 Marks)

Fig.Q2(c)

Module-2

- 3 a. Briefly explain any two types of baising methods in MOS amplifier circuits. (06 Marks)
 - b. Derive the expression for transconductance gm and voltage gain Av for a CS amplifier with small input signal (10 Marks)

OR

- 4 a. Develop a Tequivalent model for the MOSFET from a hybrid π model. (08 Marks
 - b. For a n-channel MOSFET with $t_{ox}=10$ nm, L=1.0 µm, W=10 µm, $L_{OV}=0.05$ µm, $C_{sbo}=C_{dbo}=10$ fF, $V_0=0.6$ V, $V_{SB}=1$ V and $V_{DD}=2$ V. Calculate the following capacitances when the transistor is operating in saturation C_{OX} , C_{OV} , C_{gs} , C_{gd} , C_{db} , C_{sb} . Given $E_{OX}=3.45\times10^{-11}$ F/m². (08 Marks)

2. Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8 = 50, will be treated as malpractice Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

Module-3

- Make a comparison between BJT and MOSFET (Any 4 characteristics). (08 Marks)
 - Determine the G_V, A_y, R_{out}, R_{in}, A_{VO} for a common source MOS amplifier without source (08 Marks) degeneration.

OR

- Explain the operation of a MOS current steering circuit and mention its advantage. (08 Marks)
 - Consider CG amplifier designed using a circuit. Given $g_m = 1 \text{mA/V}$ and $R_D = 15 \text{ k}\Omega$. Find R_{in} , R_{out} , A_V , A_{VO} , and G_V for $R_L = 15k\Omega$ and $R_{sig} = 50\Omega$. (08 Marks)

Module-4

- a. A CMOS CS amplifier fabricated in 0.18 μ m technology has W/L = 7.2 μ m/0.36 μ m for all transistor $K_n' = 387 \mu A/V^2$, $K_P' = 86 \mu A/V^2$, $I_{ref} = 100 \mu A$, $V_{An}' = 5 V/\mu m$ and $|V_{AP}| = 6 V/\mu m$. Find g_{m_1} , r_{0_1} , r_{0_2} and voltage gain.
 - For a CG amplifier with active load determine the expression for R_i, A_{VO}, A_V, G_{VO}, G_V, R_O.

OR

- Write a notes on: i) Double cascode ii) Folded cascode. (08 Marks)
 - b. Explain CMOS implementation of common source amplifier. (08 Marks)

- For a MOS differential pair with a common mode voltage V_{CM} is shown in Fig. Q9 (a). Let $V_{DD} = V_{SS} = 1.5V$, $K'_{n} \left(\frac{W}{L}\right) = 4mA/V^{2}$, $V_{t} = 0.5V$, I = 0.4 mA and $R_{D} = 2.5k\Omega$. Neglect
 - channel length modulation. i) Find V_{OV} and V_{GS} for each transistor

 - ii) For $V_{CM} = 0$, find V_S , id, id₂, Vd_1 and Vd_2
 - iii) Repeat (b) for $V_{CM} = +1V$
 - iv) What is the highest value for which Q₁ and Q₂ are in saturation? If current I requires a minimum voltage of 0.4V to operate properly. What is the lowest allowed V_S and hence V_{CM}? (10 Marks)

Fig.Q9(a)

What is the effect of mismatch of R_D on CMRR of a MOS differential amplifier? (06 Marks)

OR

10 a. Explain the operation of MOS differential pair with a differential input signal.

Explain 2-stage CMOS OPAMP configuration.

(08 Marks) (08 Marks)