(10 Marks)

(05 Marks)

Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. 2. Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8=50, will be treated as malpractice.

USN

Fifth Semester B.E. Degree Examination, Dec.2018/Jan.2019 **Fundamentals of CMOS VLSI**

Time: 3 hrs.

Max. Marks: 100

Note: 1. Answer any FIVE full questions, selecting at least TWO full questions from each part. 2. Assume missing data, if any.

		PART – A	
1	a.	Obtain the transfer characteristics of a CMOS inverter and mark all the regions si	howing the
		status of PMOS and NMOS transistors.	(08 Marks)
	b.	Using neat diagrams, describe fabrication steps of P-well CMOS process.	(08 Marks)
	c.	Discuss the nMOS enhancement mode transistor for different conditions of Vds at	
	C.	Discuss the histors emighteenent mode transistor for different conditions of vas an	
		Y'	(04 Marks)
2	9	Discuss in detail the 1 heard design miles for MOS and DMOS 1	
4	a.	Discuss in detail the λ -based design rules for nMOS, and PMOS layers and transis	
	1		(10 Marks)
	b.	Illustrate the schematic and stick diagram for the expression $Y = \overline{A(B+C)}$.	(10 Marks)
3	a.	Explain the operation of CMOS dynamic logic. Also discuss the cascading p	problem of
		dynamic CMOS logic.	(10 Marks)
	b.	Realize a 3-input NAND gate for clocked CMOS logic and also for CMOS domin	
			(06 Marks)
	C.	Discuss the working of pseudo nMOS logic with suitable example.	(04 Marks)
			,
4	a.	What is sheet resistance? Derive the expression for sheet resistance.	(06 Marks)
	b.	Derive the equation for rise and fall time for CMOS inverter.	(08 Marks)
	c.	Write a note on limitations of scaling.	(06 Marks)
	•	white a note on additions of southing.	(00 Marks)
PART – B			
5	a.	Discuss the architectural issues of CMOS subsystem design.	(04 Mayles)
5	b.	Explain structured design of bus arbitration logic for n-line bus.	(04 Marks)
			(10 Marks)
	C.	Explain: i) Dynamic register element ii) Dynamic shift register.	(06 Marks)
(0	Design 4 bit ALUA involvent all'A LL C EVOD EVALOR OR	1 4370
6	a.	, , , , , , , , , , , , , , , , , , , ,	
		operations.	(10 Marks)
	b.	With the neat diagram explain 4-bit serial-parallel multiplier.	(10 Marks)
7	a.	Explain with neat diagram the three transistor dynamic RAM cell.	(10 Marks)
	b.	Explain nMOS pseudo-static memory cell using circuit and stick diagram.	(10 Marks)
8	a.	Narrate the meaning of "Real Estate" in VLSI design.	(05 Marks)
	1	E 1' 'D 'I I G ICE (DIGE) ''D I G E (DIGE)	

Explain: i) Built-In-Self-Test (BIST) ii) Boundary Scan Test (BST).

Write a short note on scan design techniques.