Fifth Semester B.E. Degree Examination, Dec.2018/Jan.2019 Analog Communication

Time: 3 hrs.

Max. Marks:100

Note: Answer any FIVE full questions, selecting at least TWO questions from each part.

PART - A

1 a. Define Gaussian process and explain central Limit Theorem.

(06 Marks)

b. State and explain three properties of auto correlation function.

(09 Marks)

c. The random variable Y is the function of another random variable X in such way that Z = Cos(x) and X is uniformly distributed in the interval $(-\pi, \pi)$ ie.

$$f_x(x) = \frac{1}{2\pi}$$
 for $-\pi < x < \pi$
= 0 otherwise

Determine the expected value of z

(05 Marks)

- 2 a. Represent an AM signal both in Time Domain and Frequency Domain giving their derivation and spectrums. (08 Marks)
 - b. Explain the AM Generation using switching modulator and give the spectrum representation of same. (07 Marks)
 - c. The Antenna current of an AM Transmitter is 6Amps when only carrier is sent but increased to 7Amps when the carrier is modulated by a single tone sinusoid. Find the percentage modulation. (05 Marks)
- 3 a. Explain coherent detection of a DSBSC wave with a Block Diagram. Also explain Quadrature null effect. (07 Marks)
 - b. Explain Quadrature carrier multiplexing with Block Diagram and Spectrums. (07 Marks)
 - c. Given $x(t) = \cos(2\pi f_c t)$ and $x(t) = \sin f_c(t)$. Find the Hilbert Transform $\hat{x}(t)$ in both the cases.
- 4 a. Represent SSB both in Time Domain and Frequency Domain giving its spectrums. Also Give some advantages and disadvantages of SSB. (08 Marks)
 - b. Explain how to generate a VSB signal and give its frequency spectrum. (05 Marks)
 - c. Explain the process Frequency Translation in communication with a Block diagram.

(07 Marks)

PART - B

- 5 a. Obtain the expression for single Tone sinusoidal FM wave and prove that FM has infinite number of side bands. (09 Marks)
 - b. Explain the Demodulation of FM wave by using Balanced frequency discriminator circuit and its frequency response. (07 Marks)
 - c. Calculate the maximum bandwidth requirements for FM broadcasting. Given maximum deviation allowed is 75KHz and maximum modulation frequency allowed is 10KHz.

(04 Marks)

- 6 a. Explain PLL with a neat block diagram and derive the expression for the output. (08 Marks)
 - b. Explain a Linearised model of a PLL and obtain the expression for the output voltage.

(06 Marks)

- c. The equation for an FM wave is given by $s(t) = 10Sin [5.7 \times 10^8 t + 5 Sin 12 \times 10^{13} t]$. calculate:
 - (i) Carrier frequency
- (ii) Modulating frequency

(iii) Modulation index

- (iv) Frequency deviation
- (v) Power dissipated in 100Ω

(06 Marks)

- 7 a. Explain the following:
 - (i) Thermal Noise (ii) Noise equivalent Band width (iii) Equivalent noise temperature.

(09 Marks)

b Obtain equivalent noise temperature of two networks in cascade as shown below:

• Fig Q7(b)

Where A_1 , A_2 – are Gains; F_1F_2 – Noise Figures. T_1 T_2 – Temperature of two networks.

(06 Marks)

- c. A mixer of microwave receiver has noise Figure of 11 dB is preceded by a low noise amplifier having a power gain equal to 20dB and $T_1 = 33$ °K. Calculate effective noise equivalent temperature of the combination. (05 Marks)
- 8 a. Calculate the figure of merit in the case of a SSB wave.

(07 Marks)

b. Explain pre-emphasis and De-emphasis in FM.

(07 Marks)

c. The average noise power per unit band width measured at the front end of AM receiver is |mw|Hz. The modulating wave is sinusoidal with a carrier power of 80k watts and side band power of 10k watts/side band. The message band width is 4KHz. Assuming the envelope detector in the receiver determine the output signal to noise ratio of the system. (06 Marks)

* * * * *