1.	(61)
USN	15EC52

Fifth Semester B.E. Degree Examination, Dec.2017/Jan.2018 Digital Signal Processing

Time: 3 hrs.

Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- a. Define DFT and IDFT of a signal obtain the relationship between of DFT and z transform.
 - b. Compute circular convolution using DFT and IDFT for the following sequences, $x_1(n) = \{2, 3, 1, 1\}$ and $x_2(n) = \{1, 3, 5, 3\}$. (10 Marks)

OR

- 2 a. The first five samples of the 8 point DFT x(k) are given as follows: x(0) = 0.25, x(1) = 0.125 j0.3018, x(4) = x(6) = 0, x(5) = 0.125 j0.0518. Determine the remaining samples, if the x(n) is real valued sequence. (04 Marks)
 - b. State and prove the circular time shift and circular frequency shift properties. (06 Marks)
 - c. If $x(n) = \{1, 2, 0, 3, -2, 4, 7, 5\}$, evaluate the following:

i)
$$x(0)$$
 ii) $x(4)$ iii) $\sum_{n=0}^{7} x(k)$.

(06 Marks)

Module-2

- 3 a. State and prove the following properties of phase factor on.
 - i) periodicity
 - ii) symmetry.

(04 Marks)

b. Find the output y(n) of a filter whose impulse suppose $h(n) = \{1, 2, 3, 4\}$ and input signal to the filter is $x(n) = \{1, 2, 1, -1, 3, 0, 5, 6, 2, -2, -5, -6, 7, 1, 2, 0, 1\}$ using overlap – add method with 6-point circular convolution. (12 Marks)

OR

- 4 a. In the direct computation of N-point DFT of x(n), how many:
 - i) Complex additions
 - ii) Complex multiplications
 - iii) Real multiplication
 - iv) Real additions
 - v) Trigonometric functions

Evaluations are required?

(06 Marks)

b. Explain the linear filtering of long data sequences using overlap – save method.

(10 Marks)

Module-3

5 a. Given $x(n) = \{1, 0, 1, 0\}$, find x(2) using Goertzel algorithm.

- (06 Marks)
- b. Find the 8-point DFT of the sequence $x(n) = \{1, 2, 3, 4, 4, 3, 2, 1\}$ using DIT FFT radix 2 algorithm. (10 Marks)

OR

6 a. What is chirp-z transform? Mention its applications?

(06 Marks)

b. Find the 4-point circular convolution of x(n) and h(n) give below, using radix-2. DIF-FFT algorithm.

 $x(n) = \{1, 1, 1, 1\}$

$$h(x) = \{1, 0, 1, 0\}.$$

(10 Marks)

Module-4

- 7 a. Derive an expression for the order, cut of frequency and poles of the low pass Butterworth filter. (08 Marks)
 - b. A Butterworth low pass filter has to meet the following s specifications.

i) Pass band gain, $k_p = 1 dB$ at $\Omega_p = 4 rad/sec$

ii) Step band alternations greater than or equal to 20dB at $\Omega_s = 8rad/sec$ Determine the transfer function $H_a(s)$ of the Butterworth filter to meet the above specifications. (08 Marks)

OR

8 a. A third -order Butterworth low pass-filter has the transfer function:

$$H(s) = \frac{1}{(s+1)(s^2+s+1)}$$

Design H(z) using impulse invariant technique.

(10 Marks)

b. List the advantages and disadvantages of IIR filters.

(06 Marks)

Module-5

9 a. A linear time – invariant digital IIR filter is specified by the following transfer function:

$$H(z) = \frac{(z-1)(z-2)(z+1)z}{\left[z-\left(\frac{1}{2}+\frac{1}{2}j\right)\right]\left[z-\left(\frac{1}{2}-j\frac{1}{2}j\right)\right]\left[z-j\frac{1}{4}j\right]\left[z+j\frac{1}{4}j\right]}$$

Realize the system in the following forms: i) direct form—Lii) Direct form—II. (12 Marks)

b. Obtain a cascade realization for the system function given below:

$$H(z) = \frac{\left(1 + z^{-1}\right)^{3}}{\left(1 - \frac{1}{4}z^{-1}\right)\left(1 - z^{-1} + \frac{1}{2}z^{-2}\right)}.$$
 (04 Marks)

OR

- 10 a. Explain the following terms:
 - i) Rectangular window
 - ii) Bartlett window
 - iii) Hamming window.

(00 Manks)

b. A fitter is to be designed with the following desired frequency response:

$$H_{d}(\omega) = \begin{cases} 0, & -\pi/4 < \omega < \pi/4 \\ e^{-j2\omega}, & \pi/4 < \omega < \pi/4 \end{cases}$$

Find the frequency response of the FIR filter designed using rectangular window defined below:

$$\omega_{R}(n) = \begin{cases} 1, & 0 \le n \le 4 \\ 0, & \text{otherwise} \end{cases}$$
 (08 Marks)

4 4 4