Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

CBCS SCHEME

1	 				 		
USN						A 2 3	15EC45

Fourth Semester B.E. Degree Examination, Dec.2018/Jan.2019 Principles of Communication Systems

Time: 3 hrs.

Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- a. Define amplitude modulation. Derive the expression on AM by both time domain and frequency domain representation with necessary waveforms. (08 Marks)
 - b. Explain how RING modulator can be used to generate DSB-SC modulation.

(08 Marks)

OR

- 2 a. An audio frequency signal 5 sin $2\pi(1000t)$ is used to amplitude modulate a carrier of $100 \sin 2\pi(10^6t)$. Assume modulation index of 0.4. Find:
 - i) Sideband frequencies
 - ii) Bandwidth required.

(02 Marks)

- b. Explain the scheme for generation and demodulation of VSB modulated wave, with relevant spectrum of signals in the demodulation scheme. Give relevant mathematical expressions.
 - (08 Marks)
- c. With a neat block diagram, explain the operation of FDM technique.

(06 Marks)

Module-2

- 3 a. Describe with necessary equations and phasor diagram, the generation of Narrow Band FM(NBFM). (08 Marks)
 - b. Explain the direct method of generating FM waves.

(06 Marks)

c. A FM signal has sinusoidal modulation with W = 15KHz and modulation index β = 2. Using Carson's rule, find the transmission bandwidth and deviation ratio. Assume Δf = 75 KHz.

(02 Marks)

OR

- 4 a. Explain with relevant block diagram and mathematical expression, the demodulation of a FM signal using non-linear and linear model of the PLL. (10 Marks)
 - b. Draw the block diagram of a super heterodyne receiver and explain the function of each section. (06 Marks)

Module-3

- 5 a. Define probability theory. Explain conditional probability. (06 Marks)
 - b. Describe mean, auto correlation and co-variance functions with respect to random process.
 (04 Marks)
 - c. Explain the properties of auto correlation function.

OR

6 a. A random variable has probability function:

 $f(x) = \begin{cases} \frac{5(1-x^4)}{4} & ; \quad 0 \le x \le 1\\ 0 & ; \quad \text{elsewhere} \end{cases}$

Find: i)E(x) ii) E(4x + 2) $iii) E(x^2)$

(06 Marks)

- b Explain the following:
 - i) Short Noise ii) Thermal Noise iii) White Nose iv) Noise Figure v) Noise Equivalent Bandwidth. (10 Marks)

Module-4

7 a. Derive the expression for the FOM of DSB – SC receiver.

(08 Marks)

b. Derive the expression for the FOM of an AM receiver.

(08 Marks)

OR

8 a. In AM receiver, find the Figure of Merit (FOM) when the depth of modulation is: i) 50% ii) 100%.

(02 Marks)

b. Explain the working of pre-emphasis and de-emphasis in FM.

(06 Marks)

c. Derive the expression for the FOM of an FM receiver.

(08 Marks)

- Module-5

 a. Mention the advantages of digital communication system.

(04 Marks)

b. State and prove sampling theorem and reconstruction of lowpass signal using Nyquist Criterion. (12 Marks)

OR

10 a. With a neat block diagram, explain the operation of TDM.

(06 Marks)

b. With a neat block diagram, explain the concept of PCM.

(10 Marks)

* * * * *