

15EC44

Fourth Semester B.E. Degree Examination, Dec.2017/Jan.2018 Signals and Systems

Time: 3 hrs.

Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- Find odd and even components of the following signals. 1
 - i) $x(t) = 1 + t \cos t + t^2 \sin t + t^3 \cos^2 t \sin t$
 - ii) $x(t) = 1 + t^2 \cos^2 t + t^3 \sin^3 t + t^4 \cos t$.

(08 Marks)

- b. For the signal x(t) shown in Fig.Q1(b) find and plot.
 - i) x(-2t-4)ii) x(-3t+2) iii) x(2(-t-1)).

(08 Marks)

OR

Determine whether the system described by the following input/output relationship is memoryless, causal, time – invariant or linear.

i)
$$y(n) = e^{x(n)}$$
 ii) $y(t) = \frac{1}{C} \int_{C}^{t} x(\tau) d\tau$.

(08 Marks)

b. Given the signal x(n) = (8 - n) [u(n) - u(n - 8)]. Find and sketch

i)
$$y_1(n) = x[4-n]$$
 ii) $y_2(n) = x[2n-3]$.

(08 Marks)

Find the convolution integral of $x_1(t) = e^{-2t} u(t)$ and $x_2(t) = u(t+2)$.

(08 Marks)

b. Find $y(n) = \beta^n u(n) * \alpha^n u(n)$. Given : $|\beta| < 1$ and $|\alpha| < 1$.

(04 Marks)

c. Find $y(n) = x_1(n) * x_2(n)$

Where $x_1(n) = \left\{ \frac{1}{n}, 2, 3 \right\}$ and

$$\mathbf{x}_{2}(\mathbf{n}) = \left\{ 1, 2, \frac{3}{1}, 4 \right\}.$$

(04 Marks)

OR

Convolute the two continuous time signals $x_1(t)$ and $x_2(t)$ given below :

 $x_1(t) = \cos \pi t [u(t+1) - u(t-3)]$ and $x_2(t) = u(t)$.

(08 Marks)

Evaluate $y(n) = \beta^n u(n) * u(n-3)$ given: $|\beta| < 1$.

(04 Marks)

- Show that : i) $x(n) * \delta(n) = x(n)$ ii) $x(n) * \delta(n n_0) = x(n n_0)$.

(04 Marks)

Module-3

- 5 a. Check the following systems for memory less, causality and stability: i) $h(n) = (-0.25)^{|n|}$ ii) $h(t) = e^{2t} u(t-1)$. (66 Marks)
 - b. Find the step response of an LTI system whose impulse response is defined by $h(n) = \frac{1}{3} \sum_{k=0}^{2} \delta(n-k) \,. \tag{04 Marks}$
 - c. Evaluate the DTFS representation for the signal $x(n) = \sin\left(\frac{4\pi}{21}n\right) + \cos\left(\frac{10\pi}{21}n\right) + 1$. Also draw its magnitude and phase spectra. (06 Marks)

OR

6 a. Find the step response of an LTI system whose impulse response is given by i) $h(t) = e^{-|t|}$ ii) $h(t) = t^2 u(t)$.

b. State any six properties of DTFS. (06 Marks)

c. Determine DTFS of the signal $x(n) = \cos\left(\frac{\pi}{3}n\right)$. Also draw its spectra. (04 Marks)

Module-4

- 7 a. Obtain the Fourier transform of the signal $x(t) = e^{-at}u(t)$; a > 0. Also draw its magnitude and phase spectra. (06 Marks)
 - b. Find the DTFT of the signal $x(n) = \alpha^n u(n)$; $|\alpha| < 1$. Also draw its magnitude spectra.

(04 Marks)

c. Find the FT representation for the periodic signal $x(t) = \cos \omega_0 t$ and also draw its spectrum.

(06 Marks)

OR

8 a. Find the FT of the signum function $x(t) = s_g n(t)$. Draw the magnitude and phase spectra.

b. Find the DTFT of δ(n) and draw the spectrum. (06 Marks) (04 Marks)

c. Find the FT of the periodic impulse train $\delta_{T_0}(t) = \sum_{k=-\infty}^{\infty} \delta(t-kT_0)$ and draw the spectrum.

Module-5

9 a. Find Z.T of the following sequences and als sketch their RoC:

i) $x(n) = \sin \Omega_0 n u(n)$ ii) $x(n) = (\frac{1}{2})^n u(n) + (-2)^n u(-n-1)$. (08 Marks)

b. Find IZT of the following sequence $x(z) = \frac{\binom{1}{4}z^{-1}}{\left(1 - \frac{1}{2}z^{-1}\right)\left(1 - \frac{1}{4}z^{-1}\right)}$ with $RoC \frac{1}{4} < |z| < \frac{1}{2}$.

(08 Marks)

(06 Marks)

OR

10 a. State and prove the following properties of ZT

i) Time reversal property ii) differentiation property. (08 Marks)

b. Find IZT of the following sequence using partial fraction expansion method:

$$x(z) = \frac{z[2z - \frac{3}{2}]}{z^2 - \frac{3}{2}z + \frac{1}{2}}$$

Given: i) RoC: $|z| < \frac{1}{2}$; ii) RoC: |z| > 1; iii) RoC: $\frac{1}{2} < |z| < 1$. (08 Marks)