CBCS Scheme

USN 15EC36

Third Semester B.E. Degree Examination, Dec.2017/Jan.2018

Engineering Electromagnetics

Time: 3 hrs.

Max. Marks: 80

Note: Answer any FIVE full questions, choosing one full question from each module.

Module-1

1 a. State and explain Coulomb's law in vector form. (05 Marks)

b. Find the electric field \overline{E} at origin, if the following charge distributions are present in free space:

i) Point charge 12 nc at P(2, 0, 6).

ii) Uniform line charge of linear charge density 3 nc/m at x = 2, y = 3.

iii) Uniform surface charge of density $P_s = 0.2 \text{ ne/m}^2 \text{ at } x = 2.$ (06 Marks)

c. Define volume charge density Also find the total charge within each of the indicated volumes.

i) $0 \le \rho \le 0.1$, $0 \le \phi \le \pi$, $2 \le z \le 4$; $\rho = \rho^2 z^2 \sin(0.6\phi)$

ii) Universe : $\rho_{\rm v} = \frac{{\rm e}^{-2{\rm r}}}{{\rm r}^2}$ (05 Marks)

OR

2 a. Define Electric flux and flux density.

(04 Marks)

b. Given a 60 μC point charge located at the origin, find the total electric flux passing through:

i) That portion of the sphere $\gamma = 26$ cm bounded by $0 < \theta < \frac{\pi}{2}$ and $0 < \phi < \frac{\pi}{2}$.

ii) The closed surface defined by $\rho = 26$ cm and $z = \pm 26$ cm.

iii) The plane z = 26 cm.

(07 Marks)

c. Derive the expression for E due to infinite line charge of charge density $\rho_L(c/m)$.

(05 Marks)

Module-2

a. State and prove Gauss law for point charge.

(05 Marks)

b. State and prove divergence theorem.

(05 Marks)

c. In each of the following parts, find value for div \overline{D} at the point specified;

i) $\overline{D}_{7} = (2xyz - y^2)\overline{a}_x + (x^2z - 2xy)\overline{a}y + x^2y\overline{a}_z \text{ c/m}^2 \text{ at } P_A(2, 3, -1).$

ii) $\overline{D}=2\rho z^2\sin^2\varphi\overline{a}_{\rho}+\rho z^2\sin2\varphi\overline{a}_{\phi}+2\rho^2z\sin^2\varphi\overline{a}_{z}\,c/m^2~at~P_B(\rho=2,\,\varphi=110\%z=1).$

(06 Marks)

OR

a. Define potential difference and absolute potential.

(04 Marks)

b. A point charge of 6 nc is located at origin in free space, find potential of point p, if p is located at (0.2, -0.4, 0.4) and

i) V = 0 at infinity

ii) V = 0 at (1, 0, 0)

iii) V = 20 V at (-0.5, 1, -1)

(06 Marks)

c. Derive point form of continuity equation for current.

(06 Marks)

a. Derive the expression for Poisson's and Laplace's equation. b. Two plates of parallel plate capacitors are separated by potential zero and V₀ respectively. Assuming negligible fri

(05 Marks)

b. Two plates of parallel plate capacitors are separated by distance 'd' and maintained at potential zero and V₀ respectively. Assuming negligible fringing effect, determine potential at any point between the plates.

(06 Marks)

c. State and prove uniqueness theorem.

(05 Marks)

OR

6 a. State and explain Biot-Savart law.

(06 Marks)

- b. Find the magnetic flux density at the centre '0' of a square of sides equal to 5m and carrying 10 amperes of current. (06 Marks)
- c. At a point p(x, y, z), the components of vector magnetic potential \overline{A} are given as $A_x = 4x + 3y + 2z$, $A_y = 5x + 6y + 3z$ and $A_z = 2x + 3y + 5z$. Determine \overline{B} at point P.

(04 Marks)

Module-4

7 a. Derive Lorentz force equation.

(05 Marks)

- b. Derive an expression for the force on a differential current element placed in a magnetic field.

 (06 Marks)
- c. A conductor 4m long lies along the y-axis with a current of 10 amps in the \overline{a}_y direction. Find the force on the conductor if the field is $\overline{B} = 0.005 \, \overline{a}_x$ Telsa. (05 Marks)

OR

8 a. Define: i) Magnetization, ii) Permeability.

(04 Marks)

- b. Find the magnetization in a magnetic material where
 - i) $\mu = 1.8 \times 10^5 \text{ (H/m)} \text{ and } 120 \text{ (A/m)}$
 - ii) $\mu_r = 22$, there are 8.3×10^{28} atoms/m³ and each atom has a dipole moment of 4.5×10^{-27} (A/m²) and
 - iii) B = 300 μ T and $\chi_m < 15$

(06 Marks)

c. Discuss the boundary conditions at the interface between two media of different permeabilities. (06 Marks)

Module-5

9 a. State and explain Faraday's law of electromagnetic induction.

(04 Marks)

b. Find the frequency at which conduction current density and displacement current are equal in a medium with $\sigma = 2 \times 10^{-4}$ T/m and $\epsilon_r = 81$.

c. List Maxwell's equations in point form and integral form.

(06 Marks)

OR

10 a. Obtain solution of the wave equation for a uniform plane wave in free space.

(06 Marks)

b. State and prove Poynting theorem.

(06 Marks)

c. The depth of penetration in a certain conducting medium is 0.1 m and the frequency of the electromagnetic wave is 1.0 MHz. Find the conductivity of the conducting medium.

(04 Marks)

* * * * *