Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

17EC36

Third Semester B.E. Degree Examination, Dec.2018/Jan.2019 Engineering Electromagnetics

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. State and explain Coulomb's law in complete form.

(06 Marks)

- b. Two particles having charges 2nc and 5nc are spaced 80cm apart. Determine the \overline{E} at a point is situated at a distance of 0.5m from each of the two particles. Use $\epsilon r = 5$. (Use Bakelite medium).
- C. Identical point charges of 3µc are located at the four corners of the square of 5cm side, find the magnitude of the force on any one charge? (08 Marks)

OR

- 2 a. Derive expression for E due to infinite line charge from first principle. (08 Marks)
 - b. Two uniform line charges of density 4n c/m and 6n c/m lie in x = 0 plane at y = +5m and -6m respectively. Find E at $(4, 0, 5)^m$.
 - c. Define E and D, Hence establish the relation between D and E.

(06 Marks)

Module-2

3 a. State and prove Gauss divergence theorem.

(06 Marks)

b. If $D = \frac{5r^2}{4} \hat{a}_r c/m^2$. (in spherical system) then evaluates both sides of the divergence theorem

for the volume enclosed by r = 4m, and $\theta = \pi/4$ radians.

(08 Marks)

c. Prove that $\rho_v = \nabla \cdot \hat{D}$.

(06 Marks)

OR

4 a. Establish relation $E = -\nabla y$

(06 Marks)

b. Electrical potential at an arbitrary point in free space is given as

$$V = (x+1)^2 + (y+2)^2 + (z+3)^2$$
 Volts at p(2, 1, 0). Find:

 $i)\;V\quad ii)\;\overline{E}\quad iii)\;|\,\overline{E}\,|\quad iv)\;|\,\overline{D}\,|\quad v)\;\rho_v$

(08 Marks)

c. Derive continuity of current equation. (06 Marks)

Module-3

- 5 a. Derive Laplace and Poisson's equations and write Laplace Equation in all 3 co-ordinate systems. (08 Marks)
 - b. State and prove uniqueness theorem.

(07 Marks)

c. Calculate the numerical values for V and ρ_v at P in free space if $V = \frac{4yz}{x^2 + 1}$ at P(1, 2,3).

(05 Marks)

OR

- An assembly of two concentric spherical shells is considered. The inner spherical shell is at 6 a distance of 0.1m and is at a potential of 0 volts. The outer spherical shell is at a distance of 0.2m and at a potential of 100V. The medium between them is a free space. Find \overline{E} and (06 Marks) Dusing spherical co-ordinate system.
 - (08 Marks) State and prove Ampers circuital law.
 - c. At a point P(x, y, z) the components of vector magnetic potential \overline{A} are given as

Ax = 4x + 3y + 2z

Ay = 5x + 6y + 3z and

Az = 2x + 3y + 5z

Determine B at point P and state its nature.

(06 Marks)

Module-4

- Derive an expression for the force on a differential current element placed in a magnetic 7 field and deduce the result for straight conductor in a uniform magnetic field. (08 Marks)
 - A point charge Q = 18nc has a velocity of 5×10^6 m/s in the direction
 - $\hat{a}_{y} = 0.6 \,\hat{a}_{x} + 0.75 \,\hat{a}_{y} + 0.3 \,\hat{a}_{z}$

Calculate the magnitude of the force exerted on the charge by the field

- $\overline{E} = -3\hat{a}_x + 4\hat{a}_y + 6\hat{a}_z K v/m$
- ii) $\overline{B} = -3\hat{a}_x + 4\hat{a}_y + 6\hat{a}_z MT$
- iii) $\overline{B} \& \overline{E}$ acting together.

(06 Marks)

State and explain Lorentz force equation.

(06 Marks)

Define: i) Magnetization ii) Permeability. 8

(04 Marks)

- If $\overline{B} = 0.05 \times \hat{a}_y T$ in a material for which magnetic susceptibility $X_m = 2.5$. Find
- iv) M
- v) J vi) J_b

(08 Marks)

Discuss the boundary conditions at the interface between two media of different (08 Marks) permiabities?

Module-5

Derive Maxwell's Equations in point form and Integral form for Time varying fields.

- For a lossy dielectric $\sigma = 5$ s/m, $\epsilon_r = 1$ the electric filed intensity is E = 100 sin 10^{10} t. Find J_c and J_d and frequency at which both have Equal Magnitudes. (04 Marks)
- Starting from Maxwell's Equation Derive the wave equation for a uniform plane wave (08 Marks) travelling in free space.

OR

State and prove Poynthing theorem. 10

(08 Marks)

- b. Deduce the expressions for α and β for a uniform plane wave propagation in good conducting medium.
- c. Wet Marshy soil is characterized by $\sigma = 10^{-2}$ s/m, $\epsilon_r = 15$ and $\mu_r = 1$. At the frequencies 60Hz, 1 MHz, 100 MHz and 10 GHz indicate whether the soil may be considered a conducting dielectric or neither. (06 Marks)