Seventh Semester B.E. Degree Examination, Dec.2018/Jan.2019 Power System Analysis – II

Time: 3 hrs.

Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- 1 a. With usual notations, prove that $Y_{bus} = A^{T}YA$ using singular transformation. (06 Marks)
 - b. For the power system shown in Fig.Q1(b), obtain Y_{bus} using singular transformation.

(10 Marks)

OR

- 2 a. What is load flow analysis? Explain how buses are classified to carly out load flow analysis in power system. (06 Marks)
 - b. For the sample system of Fig.Q2(b), the generations are connected to all the 4-buses, while loads are at buses 2 and 3. Values of real and reactive powers are listed in Table Q2(b). All buses other than the slack bus are PQ type.

 (10 Marks)

	(Table 1997)		- A - C - C - C - C - C - C - C - C - C	
Bus	$P(p_u)$	Q(p _u)	V(p _u)	Type of bus
1	%		1.04 0	Ref
2	0.5	-0.2	_	PQ
3	-1.0	0.5	_	PQ
4	0.3	-0.1		PQ

Table Q2(b)

Fig.Q2(b)

1 of 3

Module-2

3 a. Draw the flow-chart of Newton-Raphson method of load flow analysis in polar co-ordinates.

(08 Marks)

b. Derive expression for all elements of Jacobbian matrices on polar form.

(08 Marks)

OR

- 4 a. Starting all assumptions, deduce the FDLF model and give the flow-chart. (10 Marks)
 - b. Compare Gauss-Seidal and Newton-Raphson methods of load flow analysis. (06 Marks)

Module-3

- 5 a. Deduce the condition for optimal load disipatch considering transmission losses in a system.
 - b. The operating cost of C₁ and C₂ in Rs/hr of two generator units each of 100M watt rating of a Thermal plant are,
 - $C_1 = 0.2P_1^2 + 40P_1 + 120 \text{ Rs/hr}$
 - $C_2 = 0.25P_2^2 + 30P_2 + 150 \text{ Rs/hr}.$
 - i) Find optimal generation of 2-units for a total demand of 180MW and the corresponding total cost.
 - ii) Saving in Rs/hr in this case, as compare to equal sharing between the two machines.
 (10 Marks)

OR

- 6 a. With a usual notation, derive the generalized transmission loss formula and B-coefficients.
 - b. Calculate the loss co-efficient in p.u and MW⁻¹ on a base of SOMUA for the network of Fig.Q6(b) below.

$$I_a = 1.2 - j0.4$$
;

$$I_b = 0.4 - j0.2$$
;

$$I_c = 0.8 - i0.1$$

$$I_d = 0.8 - j0.2$$
;

$$I_e = 1.2 - j0.3$$

$$Z_a = 0.02 + j0.08$$
;

$$Z_b = 0.08 + j0.32$$
;

$$Z_c = 0.02 + i0.08$$

$$Z_d = 0.03 + j0.12$$
;

$$Z_e = 0.03 + j0.12$$

$$V_{\text{ref}} = 1 \boxed{0}$$
.

(08 Marks)

Fig.Q6(b)

Module-4

- 7 a. Discuss the problem formulation and solution procedure of optimal scheduling for hydro thermal plant. (10 Marks)
 - b. Draw the flow chart of optimal load flow solution.

(06 Marks)

OR

8 a. Explain power system static security level classification.

(08 Marks)

- b. Define:
 - i) power system reliability
 - ii) power system security.

(08 Marks)

Module-5

- 9 a. Derive the generalized algorithm for finding the elements of bus impedance matrix Z_{bus} when a branch in added to the partial network. (08 Marks)
 - b. For the three-bus network shown in Fig.Q9(b) build Z_{bus} .

(08 Marks)

OR

10 a. Explain the numerical solution of swing equation.

(08 Marks)

b. Explain clearly the steps involved in solving power system stability solution of swing equation using Range-Kutta method. (08 Marks)

* * * *