Sixth Semester B.E. Degree Examination, Dec.2018/Jan.2019

Electrical Machine Design

Time: 3 hrs.

Max. Marks: 100

Note: 1. Answer any FIVE full questions, selecting at least TWO questions from each part,

2. Design data book may be used.

3. Assume missing data suitably.

PART - A

- What are the important considerations for the design of electrical machines? Explain in brief 1 and what are its limitations.
 - b. i) Show that the output of a d.c. generator with single turn coils is given by the expression

$$P' = \frac{0.03E'VqA}{PN}KW$$

where E' = average voltage between adjacent conductor segments.

V = peripheral speed of the generator m/sec.

- ii) Find the maximum output for a lap wound d.c. generator running at 600 rpm and provided with 40,000 ampere conductors per meter of armature periphery. (10 Marks)
- 2 Derive the output equation of DC machine.

(10 Marks)

- During the design of armature of a 1000 KW, 500 V, 10 pole, 300 rpm, d.c. compound generator, following information has been obtained:
 - External diameter of armature 1.4 m
 - Gross core length, 0.35 m
 - Flux per pole, 0.105 wb.

Based on the above, design information, find out the following details regarding the design of field system:

- i) Axial length of the pole
- ii) Width of the pole

iii) Height of the pole

iv) Pole arc

Permissible loss per square meter of the cooling surface may be assumed 700 W/mt². Assume missing data as per the rating of the machine. (10 Marks)

Show that with usual notations Volts/turn $E_1 = K\sqrt{K.V.A}$ in the case of a transformer. Explain the factors to be taken into account while selecting the value of constant K.

(10 Marks)

b. Calculate: (i) Net cross section of core (ii) Gross area of the core (iii) Core dimensions (iv) Window area (v) dimensions of the window, for a 200 kVA, 6600/250 V, 50 Hz single phase, shell type, oil immersed, self cooled, distribution transformer based on the following design parameters.

Window space factor, $K_w = 0.28$

Maximum flux density in the core, $B_m = 1.1$ Tesla

Average current density, $\delta = 2.2 \text{ A/mm}^2$ Window proportion = 2.5:1

Rectangular core proportion = 1.8:1

Net cross-section of copper in the window is 0.2 time the net cross section of iron in the (10 Marks)

- 4 a. Explain the step by step procedure for the design of cooling tubes and calculation of temperature rise in a transformer. (10 Marks)
 - b. A 300 KVA, 11000/440 V, 50 Hz, 3 phase, delta/star, core type oil immersed, self cooled transformer give the following results during the design calculations of magnetic frame and windings.

Centre to centre distance between the cores = 36 cm; Height of the window = 44 cm;

Height of the yoke = 17 cm; Total weight of the magnetic frame = 700 kg;

Average specific loss (Iron) = 2.1 W/kg; Outer diameter of HV winding = 35 cm

Resistance of LV winding per phase = 0.0047 ohm; Resistance of HV winding per phase = 9.74 ohms. Based on the above design data, calculate the following:

- i) The dimensions of the tank
- ii) The temperature rise of the transformer with plain tank
- iii) Number of cooling tubes, if the temperature rise is not to exceed 35°C. (10 Marks)

PART - B

- 5 a. Deduce for a 3 phase induction motor expression showing the relationship between H.P output, its main dimensions, speed, the specific electric and magnetic loadings, efficiency and power factor.

 (10 Marks)
 - b. Determine the main dimensions, number of radial ventilating ducts number of stator slots and the number of turns per phase of a 3.7 KW, 400 V, 3ϕ , 4 pole, 50 Hz, cage induction motor to be shorted by a star-delta shorter. Assume $B_{av} = 0.45 \text{ Wb/mt}^2$, ac/m = 23000, efficiency = 0.85 and power factor = 0.84 lagging. (10 Marks)
- 6 a. Discuss in detail, the criteria to be considered for determining the number of rotor slot of a cage induction motor. (10 Marks)
 - b. A 3 phase, 3000 volts, 260 KW, 50 Hz, 10 pole squirrel cage induction motor gave the following results during its preliminary design.

Internal diameter of stator = 75 cm

Gross length of stator = 35 cm

Number of stator slots = 125

Number of conductor per slot = 10

Based on the above detail, calculate the following for the squirrel cage rotor.

- i) Total losses in the rotor bars
- ii) Losses in the end rings
- iii) Equivalent resistance of the rotor in terms of stator.

(10 Marks)

- 7 a. Explain the design procedure to determine the pole dimensions for a salient pole synchronous machine. (10 Marks)
 - b. During the design of stator of 3 phase, 7.5 KVA, 6.6 KV, 50 Hz, 3000 rpm, turbo generator following information have been obtained.

Internal diameter of stator = 0.75 m

Gross length of core = 0.9 m

Number of stator slots per pole per phase = 7

Sectional area of stator conductor = 190 mm²

Number of conductors per slot = 4

Based upon the above data, calculate the following:

i) Flux per pole

- ii) Specific magnetic loading
- iii) Specific electrical loading
- iv) Current density for the stator winding. (10 Marks)
- 8 a. Derive the output equation of synchronous generator.

(10 Marks)

b. Design the field coil of a 3 phase, 16 poles, 50 Hz salient pole alternator based on the following design information:

Diameter of stator at the gap surface = 1.0 m

Section of pole body = $0.15 \text{m} \times 0.3 \text{m}$

Ampere turns per pole = 6500

Assume suitable data wherever necessary.

Gross length of stator core = 0.3 m

Height of the pole = 0.15 m

Exciter voltage = 110

(10 Marks)