USN

Sixth Semester B.E. Degree Examination, Dec.2018/Jan.2019 Embedded Systems

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, selecting at least TWO questions from each part.

PART - A

- 1 a. Classify the embedded system and explain the skills required for an embedded system designer. (10 Marks)
 - b. With a neat block diagram, explain the architectural features of 6811 micro controller.

(10 Marks)

- 2 a. What is single chip mode and expanded mode of operation of 6811 microcontroller? Explain the expanded mode of operation of 6811 microcontroller with the help of Motorola EVB.
 - b. Explain the different types of memories used in embedded system in detail. (10 Marks)
- 3 a. State Nyquist theorem and explain how it is used to determine the sampling frequency.

(06 Marks)

- b. What is the necessity of sample and hold circuit? Explain its working with a circuit diagram.
 (06 Marks)
 - c. With reference to a data acquisition system, define: (i) Accuracy (ii) Precision (iii) Resolution (iv) Repeatability. (08 Marks)
- 4 a. Explain the three main design technologies. How are these helpful to designers? (08 Marks)
 - b. List the various design metrics of an embedded system. (06 Marks)
 - c. Briefly explain the software-hardware trade off. Give the advantages of software implementation and hardware implementation. (06 Marks)

PART - B

5 a. Explain C program elements.

(06 Marks)

- b. With a pseudocode, explain the function queue scheduling architecture. Discuss the characteristics. (10 Marks)
- c. List and explain the various types of semaphores.

(04 Marks)

- a. Explain the shared data problem and methods of protecting shared data, in real time systems.
 (10 Marks)
 - b. What is a task? Describe the three states in which a task can exist. Explain the switching of task from one state to another with a block diagram. (10 Marks)
- 7 a. What is switch bounce? Discuss how capacitor eliminates switch bounce when pressed and when released. (10 Marks)
 - b. Define: (i) Data framing

(ii) Simplex communication

(iii) Half duplex

(iv) Full duplex

(10 Marks)

- 8 a. With neat figures, explain memory mapped I/O and isolated I/O types of computer architectures. (10 Marks)
 - b. Explain the general approach to interfacing a memory to the 6811 microcontroller, with a neat block diagram. (10 Marks)

* * * * *