GBGS SCHEME

USN									15EE63
- 1	1	1	1	1	l .	1	1	1 1	

Sixth Semester B.E. Degree Examination, Dec.2018/Jan.2019 Digital Signal Processing

Time: 3 hrs.

Max. Marks: 80

Note: Answer any FIVE full questions, choosing one full question from each module.

Module-1

- 1 a. Find the 4-point DFT of the sequence, $x(n) = 6 + \sin \frac{2\pi n}{4}$, $0 \le n \le 3$. (08 Marks)
 - b. Given the sequence $x(n) = \cos \frac{\pi n}{2}$ and $h(n) = 2^n$. Compute the 4-point circular convolution. (08 Marks)

OR

- 2 a. State and prove the following properties of DFT i) Periodicity and ii) Linearity.
 - b. Consider a FIR filter with impulse response $h(n) = \{3, 2, 1, 1\}$ if the input is $x(n) = \{1, 2, 3, 3, 2, 1, -1, -2, -3, 5, 6, -1, 2, 0, 2, 1\}$. Find the output y(n), use overlap-add method, assuming the length of block is 7. (10 Marks)

Module-2

- 3 a. Why FFT is needed? What is the speed improvement factor in calculating 04-point DFT of a sequence using direct computation and FFT algorithm? (06 Marks)
 - b. Compute the 8-point IDFT of the sequence $\alpha(k) = \{0, 2+2j, -j4, 2-2j, 0, 2+2j, j4, 2-2j\}$ using the inverse radix-2 DIT algorithm. (10 Marks)

OR

- 4 a. What are the differences and similarities between DIT and DIF-FFT algorithm? (06 Marks)
 - b. Using DIF FFT algorithm, compute the sequence $x(n) = \{1, 2, -1, 2, 4, 2, -1, 2\}$. (10 Marks)

Module-3

5 a. Transform $H(s) = \frac{s+a}{(s+a)^2 + b^2}$ in to a digital filter using impulse invariance technique.

(08 Marks)

- b. Show that the bilinear transformation maps.
 - i) The j Ω axis in s-plane on to the unit circle, |z| = 1.
 - ii) The left half s-plane, Re(s) < 0 inside the unit circle, |z| < 1. (08 Marks)

OR

- 6 a. Mention the difference between Butterworth and Chebyshev filters. (04 Marks)
 - b. Determine the H(z) for a lowest order Butterworth filter satisfying following constraints:

$$\sqrt{0.5} \le \left| H(e^{jw}) \right| \le \left| 0 \le w \right| \le \frac{\pi}{2}$$

 $\left|H(e^{jw})\right| \le 0.2$ $3\pi/4 \le w \le \pi$, with T = 1 sec. Apply impulse invariant transformation.

(12 Marks)

Module-4

- 7 a. Obtain the cascade realization of system function, $H(z) = 1 + \frac{5}{2}z^{-1} + 2z^{-1} + 2z^{-3}$. (04 Marks)
 - b. Design the digital filter using Chehyshev approximation and bilinear transformation to meet the following specifications:
 - i) Passband ripple = 1dB for $0 \le w \le 0.15\pi$
 - ii) Stopband attenuation ≥ 20 dB for $0.45\pi \leq w \leq \pi$

(12 Marks)

OR

8 a. Obtain the direct form-I, direct form – II, cascade and parallel form realization for the following system:

y(u) = 0.75y(n-1) - 0.125y(n-2) + 6x(n) + 7x(n-1) + x(n-2).

(12 Marks)

b. Obtain the direct form-I structure for the given impulse response of a filter:

$$h(u) = (1/2)^n [u(n) - u(n-3)].$$

(04 Marks)

Module-5

9 a. The frequency response of a linear phase FIR filter is given by,

 $H(e^{jw}) = e^{j3w} [2 + 1.8 \cos 3w + 1.2 \cos 2w + 0.5 \cos w].$

Find the impulse sequence of the filter.

(12 Marks)

b. Mention the advantages and disadvantages of frequency sampling method.

(04 Marks)

OR

10 a. Compare IIR filter and FIR filter.

(08 Marks)

b. Design an FIR filter (lowpass) using rectangular window with passband gain of 0dB, cut-off frequency of 200Hz, sampling frequency of 1kHz. Assume the length of the impulse response as 7.

(08 Marks)
